Numéro |
BSGF - Earth Sci. Bull.
Volume 192, 2021
Special Issue Orogen lifecycle: learnings and perspectives from Pyrenees, Western Mediterranean and analogues
|
|
---|---|---|
Numéro d'article | 52 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.1051/bsgf/2021046 | |
Publié en ligne | 2 novembre 2021 |
- Angrand P, Ford M, Watts AB. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics 37(2): 430–449. [CrossRef] [Google Scholar]
- Azambre B, Rossy M. 1976. Le magmatisme alcalin d’âge crétacé, dans les Pyrénées occidentales et l’Arc basque; ses relations avec le métamorphisme et la tectonique. Bulletin de la société Géologique de France 7(6): 1725–1728. [CrossRef] [Google Scholar]
- Barré G, Strzerzynski P, Michels R, Guillot S, Cartigny P, Thomassot E, et al. 2020. Tectono-metamorphic evolution of an evaporitic décollement as recorded by mineral and fluid geochemistry: The “Nappe des Gypses” (Western Alps) case study. Lithos 358: 105419. [CrossRef] [Google Scholar]
- Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, et al. 2011. Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Research 23(3): 309–331. [Google Scholar]
- Beaudoin N, Huyghe D, Bellahsen N, Lacombe O, Emmanuel L, Mouthereau F, et al. 2015. Fluid systems and fracture development during syn-depositional fold growth: An example from the Pico del Aguila anticline, Sierras Exteriores, southern Pyrenees, Spain. Journal of Structural Geology 70: 23–38. [CrossRef] [Google Scholar]
- Beaumont C, Muñoz JA, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth 105(B4): 8121–8145. [CrossRef] [Google Scholar]
- Bense VF, Person MA. 2006. Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research 42: W05421. [CrossRef] [Google Scholar]
- Bernus-Maury C. 1984. Étude des paragenèses caractéristiques du métamorphisme mésozoïque dans la partie orientale des Pyrénées (French). Paris 6. [Google Scholar]
- Boles JR, Eichhubl P, Garven G, Chen J. 2004. Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement. AAPG bulletin 88(7): 947–970. [CrossRef] [Google Scholar]
- Caine JS, Evans JP, Forster CB. 1996. Fault zone architecture and permeability structure. Geology 24(11): 1025–1028. [CrossRef] [Google Scholar]
- Cathelineau M, Marignac C, Boiron MC, Gianelli G, Puxeddu M. 1994. Evidence for Li-rich brines and early magmatic fluid-rock interaction in the Larderello geothermal system. Geochimica et Cosmochimica Acta 58(3): 1083–1099. [CrossRef] [Google Scholar]
- Cathelineau M, Boiron MC, Jakomulski H. 2021. Triassic evaporites: A vast reservoir of brines mobilised successively during rifting and thrusting in the Pyrenees. Journal of the Geological Society. https://doi.org/10.1144/jgs2020-259. [Google Scholar]
- Charrière A, Durand-Delga M. 2004. Le jeu fini-Crétacé du front nord-pyrénéen aux environs de Cucugnan (Corbières méridionales, Aude, France). Comptes Rendus Geoscience 336(13): 1199–1208. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y. 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics 33: 1340–1359. [CrossRef] [Google Scholar]
- Clerc C, Lagabrielle Y, Neumaier M, Reynaud JY, de Saint Blanquat M. 2012. Exhumation of subcontinental mantle rocks: Evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société géologique de France 183(5): 443–459. [CrossRef] [Google Scholar]
- Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2013. Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study. International Journal of Earth Sciences 103(1): 141–163. [Google Scholar]
- Clerc C, Lahfid A, Monie P, Lagabrielle Y, Chopin C, Poujol M, et al. 2015. High-temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6: 643–668. [CrossRef] [Google Scholar]
- Connan J, Lacrampe-Couloume G. 1993. The origin of the Lacq superieur heavy oil accumulation and the giant Lacq inferieur gas field. Applied Petroleum Geochemistry 3: 464–488. [Google Scholar]
- Corre B, Boulvais P, Boiron MC, Lagabrielle Y, Marasi L, Clerc C. 2018. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineralogy and Petrology 112(5): 647–670. [CrossRef] [Google Scholar]
- Crognier N, Hoareau G, Aubourg C, Dubois M, Lacroix B, Branellec M, et al. 2018. Syn-orogenic fluid flow in the Jaca Basin (south Pyrenean fold and thrust belt) from fracture and vein analyses. Basin Research 30(2): 187–216. [CrossRef] [Google Scholar]
- Cruset D, Cantarero I, Vergés J, John CM, Muñoz-López D, Travé A. 2018. Changes in fluid regime in syn-orogenic sediments during the growth of the south Pyrenean fold and thrust belt. Global and Planetary Change 171: 207–224. [CrossRef] [Google Scholar]
- Davis DW, Lowenstein TK, Spencer RJ. 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O. Geochimica et Cosmochimica Acta 54(3): 591–601. [CrossRef] [Google Scholar]
- Dauteuil O, Ricou LE. 1989. Une circulation de fluides de haute-temperature a l’origine du metamorphisme cretace nord-pyreneen. Circ. High-Temp. Fluids Orig. North Pyrenean Cretac. Metamorph. Geodinamica Acta 3: 237–250. [CrossRef] [Google Scholar]
- Dubois M, Monnin C, Castelain T, Coquinot Y, Gouy S, Gauthier A, et al. 2010. Investigation of the H2O-NaCl-LiCl System: A synthetic fluid inclusion study and thermodynamic modeling from −50 °C to +100 °C and up to 12 mol/kg. Economic Geology 105(2): 329–338. [CrossRef] [Google Scholar]
- Ducoux M, Jolivet L, Callot J-P, Aubourg C, Masini E, Lahfid A, et al. 2019. The Nappe des Marbres Unit of the Basque-Cantabrian Basin: The tectono-thermal evolution of a fossil hyperextended rift basin. Tectonics 38(11): 3881–3915. [CrossRef] [Google Scholar]
- Ducoux M, Masini E, Tugend J, Gómez-Romeu J, Calassou S. 2021a. Basement-decoupled hyperextension rifting: The tectono-stratigraphic record of the salt-rich Pyrenean necking zone (Arzacq Basin, SW France). GSA Bulletin. https://doi.org/10.1130/B35974.1. [Google Scholar]
- Ducoux M, Jolivet L, Masini E, Augier R, Lahfid A, Bernet M, et al. 2021b. Distribution and intensity of high-temperature low-pressure metamorphism across the Pyrenean-Cantabrian belt: Constraints on the thermal record of the pre-orogenic hyperextension rifting. Bulletin de la Société géologique de France 192: 43. https://doi.org/10.1051/bsgf/2021029. [Google Scholar]
- Eichhubl P, Davatz NC, Becker SP. 2009. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah. AAPG Bulletin 93(5): 653–681. [CrossRef] [Google Scholar]
- Elias-Bahnan A, Carpentier C, Pironon J, Ford M, Ducoux M, Barré G, et al. 2020. Impact of geodynamics on fluid circulation and diagenesis of carbonate reservoirs in a foreland basin: Example of the Upper Lacq reservoir (Aquitaine Basin, SW France). Marine and Petroleum Geology 111: 676–694. [CrossRef] [Google Scholar]
- Espurt N, Angrand P, Teixell A, Labaume P, Ford M, de Saint Blanquat M, et al. 2019. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and Permian-Mesozoic rift systems on mountain building. Tectonophysics 764: 25–45. [CrossRef] [Google Scholar]
- Fabriès J, Lorand J-P, Bodinier J-L, Dupuy C. 1991. Evolution of the Upper Mantle beneath the Pyrenees: Evidence from Orogenic Spinel Lherzolite Massifs. Journal of Petrology Special-Volume 55–76. [Google Scholar]
- Fabriès J, Lorand J-P, Bodinier J-L. 1998. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292: 145–167. [CrossRef] [Google Scholar]
- Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL. 1999. Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters 173(3): 157–170. [Google Scholar]
- Fillon C, van der Beek P. 2012. Post-orogenic evolution of the southern Pyrenees: Constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Research 24(4): 418–436. [Google Scholar]
- Fillon C, Mouthereau F, Calassou S, Pik R, Bellahsen N, Gautheron C, et al. 2021. Post-orogenic exhumation in the western Pyrenees: Evidence for extension driven by pre-orogenic inheritance. Geological Society, London. https://doi.org/10.1144/jgs2020-079. [Google Scholar]
- Ford M, Hemmer L, Vacherat A, Gallagher K, Christophoul F. 2016. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. Journal of the Geological Society 173(3): 419–437. [CrossRef] [Google Scholar]
- Garrido M, Megias G. 1972. Sintesis geologica del secundario y terciario entre los rios cinca y segre. (pirineo central de la vertiente sur pirenaica, provincias de huesca y lerida). Bol. Geol. Min. 83: 1–47. [Google Scholar]
- García Senz J. 2002. Cuencas extensivas del Cretácico Inferior en los Pirineos centrales. Formación y subsecuente inversión. Universitat de Barcelona. [Google Scholar]
- Golberg JM, Leyreloup AF. 1990. High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology 104: 194–207. [CrossRef] [Google Scholar]
- Goldstein RH. 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55(1-4): 159–193. [CrossRef] [Google Scholar]
- Gómez-Romeu J, Masini E, Tugend J, Ducoux M, Kusznir N. 2019. Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case-study. Tectonophysics 766: 131–150. [Google Scholar]
- Grare A, Lacombe O, Mercadier J, Benedicto A, Guilcher M, Trave A, et al. 2018. Fault zone evolution and development of a structural and hydrological barrier: the quartz breccia in the Kiggavik Area (Nunavut, Canada) and its control on uranium mineralization. Minerals 8(8): 319. [CrossRef] [Google Scholar]
- Incerpi N, Manatschal G, Martire L, Bernasconi SM, Gerdes A, Bertok C. 2020. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: new constraints from the Chaînons Béarnais (W Pyrenees). International Journal of Earth Sciences 109(3): 1071–1093. [CrossRef] [Google Scholar]
- Jammes S, Manatschal G, Lavier L, Masini E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 28(4): TC4012. https://doi.org/10.1029/2008TC002406. [Google Scholar]
- Jourdon A, Le Pourhiet L, Mouthereau F, Masini E. 2019. Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters 512: 89–99. [CrossRef] [Google Scholar]
- Labaume P, Teixell A. 2020. Evolution of salt structures of the Pyrenean rift (Chaînons Béarnais, France): From hyper-extension to tectonic inversion. Tectonophysics 785: 228451. [CrossRef] [Google Scholar]
- Lacrampe G. 1990. Origine des gaz d’Aquitaine sud, Rapport de phase 1, Compilation des données disponibles proposition de travaux complémentaires. TOTAL EP Internal Report. [Google Scholar]
- Lacroix B, Travé A, Buatier M, Labaume P, Vennemann T, Dubois M. 2014. Syntectonic fluid-flow along thrust faults: Example of the South-Pyrenean fold-and-thrust belt. Marine and Petroleum Geology 49: 84–98. [CrossRef] [Google Scholar]
- Lagabrielle Y, Bodinier JL. 2008. Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20(1): 11–21. [CrossRef] [Google Scholar]
- Lagabrielle Y, Labaume P, de Saint Blanquat M. 2010. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29(4). [Google Scholar]
- Lescoutre R, Tugend J, Brune S, Masini E, Manatschal G. 2019. Thermal evolution of asymmetric hyperextended magma-poor rift systems: results from numerical modelling and Pyrenean field observations. Geochemistry, Geophysics, Geosystems 20(10): 4567–4587. [CrossRef] [Google Scholar]
- Louis S, Luijendijk E, Dunkl I, Person M. 2019. Episodic fluid flow in an active fault. Geology 47(10): 938–942. [CrossRef] [Google Scholar]
- Macchiavelli C, Vergés J, Schettino A, Fernàndez M, Turco E, Casciello E, et al. 2017. A new southern North Atlantic isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth 122(12): 9603–9626. [CrossRef] [Google Scholar]
- Magee ME, Zoback MD. 1993. Evidence for a weak interplate thrust fault along the northern Japan subduction zone and implications for the mechanics of thrust faulting and fluid expulsion. Geology 21(9): 809–812. [CrossRef] [Google Scholar]
- Martín-Chivelet J, Floquet M, García Senz J, Callapez PM, López-Mir B, Muñoz JA, et al. 2019. Late Cretaceous Post-Rift to Convergence in Iberia. In: The Geology of Iberia: A Geodynamic Approach. Cham: Springer, pp. 285–376. [CrossRef] [Google Scholar]
- Masini E, Manatschal G, Tugend J, Mohn G, Flament JM. 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences 103(6): 1569–1596. [CrossRef] [Google Scholar]
- Mattauer M, Proust F. 1962. Sur la tectonique de la fin du Crétacé et du début du Tertiaire en Languedoc. Rev. Géogr: Phys. Géol. Dyn. V: 5–21. [Google Scholar]
- McCaig AM. 1988. Deep fluid circulation in fault zones. Geology 16(10): 867–870. [CrossRef] [Google Scholar]
- McCaig AM, Tritlla J, Banks DA. 2000. Fluid flow patterns during Pyrenean thrusting. Journal of Geochemical Exploration 69: 539–543. [CrossRef] [Google Scholar]
- McClay K, Munoz J-A, Garcia Senz J. 2004. Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology 32: 737–740. [CrossRef] [Google Scholar]
- Milesi G, Soliva R, Monié P, Münch P, Bellanger M, Bruguier O, et al. 2019. Mapping a geothermal anomaly using apatite (U-Th)/He thermochronology in the Têt fault damage zone, eastern Pyrenees, France. Terra Nova 31(6): 569–576. [CrossRef] [Google Scholar]
- Milesi G, Monié P, Münch P, Soliva R, Taillefer A, Bruguier O, et al. 2020. Tracking geothermal anomalies along a crustal fault using (U-Th)/He apatite thermochronology and rare-earth element (REE) analyses: The example of the Têt fault (Pyrenees, France). Solid Earth 11(5): 1747–1771. [CrossRef] [Google Scholar]
- Milkov AV, Etiope G. 2018. Revised genetic diagrams for natural gases based on a global dataset of > 20 000 samples. Organic Geochemistry 125: 109–120. [CrossRef] [Google Scholar]
- Motte G, Hoareau G, Callot JP, Révillon S, Piccoli F, Calassou S, Gaucher EC. 2021. Rift and salt-related multi-phased dolomitization: example from the northwestern Pyrenees. Marine and Petroleum Geology 126: 104932. [CrossRef] [Google Scholar]
- Mouthereau F, Filleaudeau PY, Vacherat A, Pik R, Lacombe O, Fellin MG, et al. 2014. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33(12): 2283–2314. [Google Scholar]
- Muñoz JA. 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: Thrust tectonics. Dordrecht: Springer, pp. 235–246.. [Google Scholar]
- Oliva-Urcia B, Beamud E, Arenas C, Pueyo EL, Garcés M, Soto R, et al. 2019. Dating the northern deposits of the Ebro foreland basin; implications for the kinematics of the SW Pyrenean front. Tectonophysics 765: 11–34. [CrossRef] [Google Scholar]
- Olivet JL. 1996. La cinématique de la plaque ibérique. Bulletin des centres de recherches exploration-production Elf-Aquitaine 20(1): 131–195. [Google Scholar]
- Ortiz A, Guillocheau F, Lasseur E, Briais J, Robin C, Serrano O, Fillon C. 2020. Sediment routing system and sink preservation during the post-orogenic evolution of a retro-foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Marine and Petroleum Geology 112: 104085. [CrossRef] [Google Scholar]
- Quesnel B, Boiron MC, Cathelineau M, Truche L, Rigaudier T, Bardoux G, et al. 2019. Nature and origin of mineralizing fluids in hyperextensional systems: The case of cretaceous Mg metasomatism in the Pyrenees. Geofluids 2019. https://doi.org/10.1155/2019/7213050. [CrossRef] [Google Scholar]
- Ravier J. 1959. Le metamorphisme des terrains secondaires des Pyrénées. Mem. Soc. Geol. Fr. Nouv. Ser., Vol. 38. Paris : Société géologique de France. [Google Scholar]
- Renard S, Pironon J, Sterpenich J, Carpentier C, Lescanne M, Gaucher EC. 2019. Diagenesis in Mesozoic carbonate rocks in the North Pyrénées (France) from mineralogy and fluid inclusion analysis: Example of Rousse reservoir and caprock. Chemical Geology 508: 30–46. [CrossRef] [Google Scholar]
- Rocher M, Lacombe O, Angelier J, Deffontaines B, Verdier F. 2000. Cenozoic folding and faulting in the south Aquitaine Basin (France): insights from combined structural and paleostress analyses. Journal of Structural Geology 22(5): 627–645. [CrossRef] [Google Scholar]
- Roest WR, Srivastava SP. 1991. Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology 19(6): 613–616. [CrossRef] [Google Scholar]
- Rosenbaum G, Lister GS, Duboz C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359(1-2): 117–129. [Google Scholar]
- Rye DM, Bradbury HJ. 1988. Fluid flow in the crust: An example from a Pyrenean thrust ramp. American Journal of Science 288(3): 197–235. [CrossRef] [Google Scholar]
- Salardon R, Carpentier C, Bellahsen N, Pironon J, France-Lanord C. 2017. Interactions between tectonics and fluid circulations in an inverted hyper-extended basin: Example of mesozoic carbonate rocks of the western North Pyrenean Zone (Chaînons Béarnais, France). Marine and Petroleum Geology 80: 563–586. [CrossRef] [Google Scholar]
- Sibson RH. 1981. Fluid flow accompanying faulting: Field evidence and models. Earthquake Prediction: An International Review 4: 593–603. [Google Scholar]
- Sibson RH. 2000. Fluid involvement in normal faulting. Journal of Geodynamics 29(3-5): 469–499. [CrossRef] [Google Scholar]
- Sibuet JC, Srivastava SP, Spakman W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research: Solid Earth 109(B8). [Google Scholar]
- Smeraglia L, Fabbri O, Choulet F, Buatier M, Boulvais P, Bernasconi SM, et al. 2020. Syntectonic fluid flow and deformation mechanisms within the frontal thrust of a foreland fold-and-thrust belt: Example from the Internal Jura, Eastern France. Tectonophysics 778: 228178. [CrossRef] [Google Scholar]
- Teixell A. 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics 17(3): 395–406. [CrossRef] [Google Scholar]
- Teixell A, Labaume P, Lagabrielle Y. 2016. The crustal evolution of the west-central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience 348(3-4): 257–267. [CrossRef] [Google Scholar]
- Ternois S, Odlum M, Ford M, Pik R, Stockli D, Tibari B, et al. 2019. Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics 38(4): 1308–1336. [CrossRef] [Google Scholar]
- Thinon I, Fidalgo-González L, Réhault JP, Olivet JL. 2001. Déformations pyrénéennes dans le golfe de Gascogne. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 332(9): 561–568. [Google Scholar]
- Travé A, Labaume P, Calvet F, Soler A. 1997. Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain). Tectonophysics 282(1-4): 375–398. [CrossRef] [Google Scholar]
- Travé A, Labaume P, Calvet F, Soler A, Tritlla J, Buatier M, et al. 1998. Fluid migration during Eocene thrust emplacement in the south Pyrenean Foreland Basin (Spain): An integrated structural, mineralogical and geochemical approach. Geological Society, London, Special Publications 134(1): 163–188. [CrossRef] [Google Scholar]
- Travé A, Calvet F, Sans M, Vergés J, Thirlwall M. 2000. Fluid history related to the Alpine compression at the margin of the south-Pyrenean Foreland Basin: the El Guix anticline. Tectonophysics 321(1): 73–102. [CrossRef] [Google Scholar]
- Travé A, Labaume P, Vergés J. 2007. Fluid systems in foreland fold-and-thrust belts: An overview from the Southern Pyrenees. In: Thrust Belts and Foreland Basins. Berlin, Heidelberg: Springer, pp. 93–115. [CrossRef] [Google Scholar]
- Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I. 2014. Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33(7): 1239–1276. [CrossRef] [Google Scholar]
- Vacherat A, Mouthereau F, Pik R, Bernet M, Gautheron C, Masini E, et al. 2014. Thermal imprint of rift-related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters 408: 296–306. [CrossRef] [Google Scholar]
- Van den Kerkhof AM, Hein UF. 2001. Fluid inclusion petrography. Lithos 55(1-4): 27–47. [CrossRef] [Google Scholar]
- Vergés J, García Senz J. 2001. Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. Mémoires du Muséum national d’histoire naturelle (1993) 186: 187–212. [Google Scholar]
- Vergés J, Millán H, Roca E, Muñoz JA, Marzo M, Cirés J, et al. 1995. Eastern Pyrenees and related foreland basins: Pre-, syn-and post-collisional crustal-scale cross-sections. Marine and Petroleum Geology 12(8): 903–915. [CrossRef] [Google Scholar]
- Vergés J, Fernàndez M, Martínez A. 2002. The Pyrenean orogen: Pre-, syn-, and post-collisional evolution. Journal of the Virtual Explorer 8: 55–74. [Google Scholar]
- Waldner M, Bellahsen N, Mouthereau F, Bernet M, Pik R, Rosenberg CL, et al. 2021. Central Pyrenees mountain building: Constraints from new LT thermochronological data from the Axial Zone. Tectonics 40: e2020TC006614. [CrossRef] [Google Scholar]
- Weis P, Driesner T, Heinrich CA. 2012. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338(6114): 1613–1616. [Google Scholar]
- Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA. 2011. Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. American Journal of Science 311(5): 442–482. [CrossRef] [Google Scholar]
- Yardley BWD, Graham JT. 2002. The origins of salinity in metamorphic fluids. Geofluids 2(4): 249–256. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.