Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 193, 2022
Numéro d'article 13
Nombre de pages 29
DOI https://doi.org/10.1051/bsgf/2022008
Publié en ligne 22 août 2022
  • Abrecht J, Biino GG, Mercolli I, Stille P. 1991. Mafic-ultramafic rock associations in the Aar, Gotthard and Tavetsch Massifs of the Helvetic domain in the Central Swiss Alps: Markers of ophiolitic pre-Variscan sutures, reworked by polymetamorphic events? Schweizerische Mineralogische und Petrographische Mitteilungen. 71: 295–300. [Google Scholar]
  • Aguilar C, Liesa M, Castiñeiras P, Navidad M. 2014. Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U-Pb age zircon dating. Journal of the Geological Society 171(2): 181–192. [CrossRef] [Google Scholar]
  • Alcock JE, Catalán JRM, Pascual FJR, Montes AD, Fernández RD, Barreiro JG, et al. 2015. 2-D thermal modeling of HT-LP metamorphism in NW and Central Iberia: Implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution. Tectonophysics 657: 21–37. [CrossRef] [Google Scholar]
  • Autran A, Cogné J. 1980. La zone interne de l’orogène varisque dans l’ouest de la France et sa place dans le développement de la chaîne hercynienne. Géologie Eur. 26° CGI Paris Mém. BRGM 108: 90–111. [Google Scholar]
  • Ballèvre M, Manzotti P, Dal Piaz GV. 2018. Pre-Alpine (Variscan) inheritance: A key for the location of the future Valaisan Basin (Western Alps). Tectonics 37: 786–817. [CrossRef] [Google Scholar]
  • Barbey P, Marignac C, Montel JM, Macaudière J, Gasquet D, Jabbori J. 1999. Cordierite growth texture and the conditions of genesis and emplacement of crustal granitic magmas: The Velay granite complex (Massif Central, France). J. Petrol. 40: 1425–1441. [CrossRef] [Google Scholar]
  • Barbey P, Villaros A, Marignac C, Montel JM. 2015. Multiphase melting, magma emplacement and PT-time path in late-collisional context: The Velay example (Massif Central, France). Bulletin de la Société géologique de France 186(2-3): 93–116. [CrossRef] [Google Scholar]
  • Barfety JC, Gidon M, Ménot RP, Debon F, Pêcher S, Guillot S, et al. 2000. Notice de la carte géologique de la France, feuille Domène (773), scale 1:50 000. Orléans: BRGM. [Google Scholar]
  • Barfety JC, Montjuvent G, Pécher A, Carme F. 1988. Notice de la carte géologique de la France, feuille La Mure (821), scale 1:50 000. Orléans: BRGM. [Google Scholar]
  • Barfety JC, Pécher A, Vivier G, Demeulemeester P, Poulain PA, Vernet J, et al. 1982. Notice de la carte géologique de la France, feuille St-Christophe-en-Oisans (822), scale 1:50 000. Orléans: BRGM. [Google Scholar]
  • Bellahsen N, Mouthereau F, Boutoux A, Bellanger M, Lacombe O, Jolivet L, et al. 2014. Collision kinematics in the western external Alps. Tectonics 33: 2013TC003453. https://doi.org/10.1002/2013TC003453. [Google Scholar]
  • Bellanger M, Augier R, Bellahsen N, Jolivet L, Monié P, Baudin T, et al. 2015. Shortening of the European Dauphinois margin (Oisans Massif, Western Alps): New insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating. J. Geodyn. 83: 37–64. https://doi.org/10.1016/j.jog.2014.09.004. [CrossRef] [Google Scholar]
  • Bellanger M, Bellahsen N, Jolivet L, Baudin T, Augier R, Boutoux A. 2014. Basement shear zones development and shortening kinematics in the Ecrins Massif, Western Alps. Tectonics 33: 84–111. [CrossRef] [Google Scholar]
  • Bellot JP. 2005. The Palaeozoic evolution of the Maures Massif (France) and its potential correlation with other areas of the Variscan belt: A review. J. Virtual Explor. 19: 1–24. [CrossRef] [Google Scholar]
  • Bodinier JL, Dupuy C, Dostal J, Carme F. 1981. Geochemistry of Ophilolites from Chamrousse Complexe (Belledonne Massif, Alps). Contrib Miner. Pet. 78: 379–388. [Google Scholar]
  • Bogdanoff S, Menot RP, Vivier G. 1991. Les Massifs cristallins externes des Alpes occidentales francaises, un fragment de la zone interne varisque. Extern. Cryst. Massifs Fr. West. Alps Part Intern. Variscan Zone 44: 237–285. [Google Scholar]
  • Bordet P, Bordet C. 1963. Belledonne-Grande Rousses et Aiguilles-Rouges-Mont-Blanc : quelques données nouvelles sur leurs rapports structuraux. Livre à la mémoire du professeur Fallot. Mém. Hors Sér. Société Géologique Fr. 1: 309–316. [Google Scholar]
  • Boutoux A, Bellahsen N, Lacombe O, Verlaguet A, Mouthereau F. 2014. Inversion of pre-orogenic extensional basins in the external Western Alps: Structure, microstructures and restoration. J. Struct. Geol. 60: 13–29. [CrossRef] [Google Scholar]
  • Bruguier O, Bosch D, Caby R, Vitale-Brovarone A, Fernandez L, Hammor D, et al. 2017. Age of UHP metamorphism in the Western Mediterranean: insight from rutile and zircon inclusions in a diamond-bearing garnet magacryst (Edough Massif, Algeria). Earth Planet. Sci. Lett. 474: 215–225. [CrossRef] [Google Scholar]
  • Bussien Grosjean D, Meisser N, May-Leresche S, Ulianov A, Vonlanthen P. 2017. The Morcles microgranite (Aiguilles Rouges, Swiss Alps): Geochronological and geochemical evidences for a common origin with the Vallorcine intrusion. Swiss J. Geosci. 110: 35–49. https://doi.org/10.1007/s00015-017-0282-3. [Google Scholar]
  • Bussy F, Von Raumer JF. 1994. U-Pb geochronology of Palaeozoic magmatic events in the Mont-Blanc Crystalline Massif, Western Alps. Schweiz. Mineral. Petrogr. Mitt. 74: 514–515. [Google Scholar]
  • Bussy F, Péronnet V, Ulianov A, Epard JL, Von Raumer J. 2011. Ordovician magmatism in the External French Alps: witness of a peri-Gondwanan active continental margin. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D, eds. The Ordovician of the World. Madrid: Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, Vol. 14, pp. 75–82. [Google Scholar]
  • Carme F. 1970. Age briovérien probable de la majeure partie des séries supposées dévono-dinantiennes et existence d’un cycle ororgénique anté-hercynien, sans doute cadomien, dans la chaîne de Belledonne (Alpes française). C. R. Acad. Sci. Paris 271: 631–633. [Google Scholar]
  • Carme F. 1965. Sur deux formations, d’origine volcanique, des schistes cristallins anté-houillers de la chaîne de Belledonne (Alpes Francaise). C. R. Acad. Sci. Paris 260: 6401–6404. [Google Scholar]
  • Chardon D, Aretz M, Roques D. 2020. Reappraisal of Variscan tectonics in the southern French Massif Central. Tectonophysics 787: 228477. [CrossRef] [Google Scholar]
  • Carosi R, Montomoli C, Tiepolo M, Frassi C. 2012. Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 24: 42–51. [CrossRef] [Google Scholar]
  • Chelle-Michou C, Laurent O, Moyen JF, Block S, Paquette JL, Couzinié S, et al. 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Res. 46: 170–190. [CrossRef] [Google Scholar]
  • Cochelin B, Chardon D, Denèle Y, Gumiaux C, Le Bayon B. 2017. Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax. Bull. Soc. Geol. Fr. 188. [Google Scholar]
  • Cochelin B, Lemirre B, Denèle Y, de Saint Blanquat M. 2021. Strain partitioning within bending orogens, new insights from the Variscan belt (Chiroulet-Lesponne domes, Pyrenees). Tectonics 40: e2020TC006386. [CrossRef] [Google Scholar]
  • Collombet M, Thomas JC, Chauvin A, Tricart P, Bouillin JP, Gratier JP. 2002. Counterclockwise rotation of the western Alps since the Oligocene: New insights from paleomagnetic data. Tectonics 21(4): 1032. [Google Scholar]
  • Compagnoni R, Ferrando S, Lombardo B, Radulesco N, Rubatto D. 2010. Paleo-European crust of the Italian Western Alps: Geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles-Rouges and Maures-Tanneron Massifs. J. Virtual Explor. 36. https://doi.org/10.3809/jvirtex.2010.00228. [Google Scholar]
  • Connolly JA. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236: 524–541. [CrossRef] [Google Scholar]
  • Connolly JA, Pettrini K. 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol. 20: 697–708. [CrossRef] [Google Scholar]
  • Corsini M, Rolland Y. 2009. Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. C. R. Geosci. 341: 214–223. [CrossRef] [Google Scholar]
  • Couzinié S, Moyen JF, Villaros A, Paquette JL, Scarrow JH, Marignac C. 2014. Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J. Geosci. 59: 1–18. [Google Scholar]
  • Debon F, Lemmet M. 1999. Evolution of Mg/Fe Ratios in Late Variscan Pultonic Rocks from the External Crystalline Massif of the Alps (France, Italy, Switzerland). J. Petrol. 40: 1151–1185. [CrossRef] [Google Scholar]
  • Duchesne JC, Liégeois JP, Bolle O, Vander Auwera J, Bruguier O, Matukov DI, et al. 2013. The fast evolution of a crustal hot zone at the end of a transpressional regime: The Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162: 195–220. [CrossRef] [Google Scholar]
  • Duesterhoeft E, Lanari P, 2020. Iterative thermodynamic modelling – Part 1: A theoretical scoring technique and a computer program (Bingo-Antidote). J. Metamorph. Geol. 8: 527–551. [CrossRef] [Google Scholar]
  • Faure M, Mezeme EB, Duguet M, Cartier C, Talbot JY. 2005. Paleozoic tectonic evolution of medio-europa from the example of the french massif central and massif armoricain. J. Virtual Explor. 19: Paper 5. [Google Scholar]
  • Faure M, Rossi P, Gaché J, Melleton J, Frei D, Li X, et al. 2014. Variscan orogeny in Corsica: New structural and geochronological insights, and its place in the Variscan geodynamic framework. Int. J. Earth Sci. (Geol Rundsch). https://doi.org/10.1007/s00531-014-1031-8. [Google Scholar]
  • Faure M, Ferrière J. 2022. Reconstructing the Variscan terranes in the Alpine basement: facts and arguments for an Alpidic orocline. Geosciences 12: in press. [Google Scholar]
  • Fernandez A, Guillot S, Ménot RP, Ledru P. 2002. Late Paleozoic polyphased tectonics in the SW Belledonne Massif (external crystalline massifs, French Alps). Geodin. Acta 15: 127–139. [CrossRef] [Google Scholar]
  • Ferrando S, Lombardo B, Compagnoni R. 2008. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). Eur. J. Mineral. 20: 777–790. https://doi.org/10.1127/0935-1221/2008/0020-1891. [CrossRef] [Google Scholar]
  • Fossen H, Harris LB, Cavalcante C, Archanjo CJ, Ávila CF. 2022. The Patos-Pernambuco shear system of NE Brazil: Partitioned intracontinental transcurrent deformation revealed by enhanced aeromagnetic data. Journal of Structural Geology 158: 104573. [Google Scholar]
  • Franke W. 2000. The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol. Soc. Lond. Spec. Publ. 179: 35–61. [CrossRef] [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Res. 48: 257–284. [CrossRef] [Google Scholar]
  • Fréville K. 2016. The variscan orogeny in the external crystalline massifs of Belledonne and Pelvoux (French Western Alps): The role of partial melting and plutonism on the structuration of the continental crust. Doctoral dissertation, Université de Orléans, Orléans, France. [Google Scholar]
  • Fréville K, Trap P, Faure M, Melleton J, Xian-Hua L, Wei L, et al. 2018. New structural, metamorphic and geochronological insights on the Variscan evolution in the Alpine Belledonne Massif (France). Tectonophysics 726: 14–42. [CrossRef] [Google Scholar]
  • Fuhrman ML, Lindsley DH. 1988. Ternary-feldspar modeling and thermometry. Am. Miner. 73: 201–215. [Google Scholar]
  • Gärtner A, Youbi N, Villeneuve M, Sagawe A. 2017. The zircon evidence of temporally changing sediment transport – The NW Gondwana margin during Cambrian to Devonian time (Aoucert and Smara areas, Moroccan Sahara). Int. J. Earth Sci. 106: 2747–2769. [CrossRef] [Google Scholar]
  • Gerbault M, Schneider J, Reverso-Peila A, Corsini M. 2018. Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France – Geological and thermo-mechanical aspects. Tectonophysics 746: 439–458. [CrossRef] [Google Scholar]
  • Giacomini F, Dallai L, Carminati E, Tiepolo M, Ghezzo C. 2008. Exhumation of a Variscan orogenic complex: insights into the composite granulitic-amphibolitic metamorphic basement of south-east Corsica (France). Journal of Metamorphic Geology 26: 403–436. [CrossRef] [Google Scholar]
  • Gibergy P. 1968. Découverte de « grès à trous » renfermant des schistes noirs de Valbonnais (série cristallophyllienne des Massifs Cristallins Externes dans les Alpes française). C. R. Acad Sci. Paris 267: 1251–1254. [Google Scholar]
  • Gidon M, Bonhomme JL, Fourneaux JC, Monjuvent G, Mouterde R. 1980. Notice de la carte géologique de la France, feuille Saint-Bonnet (845), scale 1:50 000. Orléans: BRGM. [Google Scholar]
  • Gillam BG, Little TA, Smith E, Toy, VG. 2013. Extensional shear band development on the outer margin of the Alpine mylonite zone, Tatare Stream, Southern Alps, New Zealand. Journal of Structural Geology 54: 1–20. [CrossRef] [Google Scholar]
  • Gonçalves GO, Lana C, Scholz R, Buick IS, Gerdes A, Kamo SL, et al. 2016. An assessment of monazite from the Itambé pegmatite district for as U-Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite. Chem. Geol. 424: 30–50. [CrossRef] [Google Scholar]
  • Grandjean V, Guillot S, Pecher A. 1996. Un nouveau témoin de l’évolution métamorphique BP-HT post-orogénique hercynienne : l’unité de Peyre-Arguet (Haut-Dauphiné). C. R. Acad. Sci. Sér. 2 Sci. Terre Planètes 322: 189–195. [Google Scholar]
  • Guerrot C, Debon F. 2000. U-Pb zircon dating of two contrasting Late Variscan plutonic suites from the Pelvoux Massif (French Western Alps). Schweiz. Mineral. Petrogr. Mitt. 80: 249–256. [Google Scholar]
  • Guillot S, di Paola S, Ménot RP, Ledru P, Spalla M, Gosso G, et al. 2009. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps. Bull Soc Géol Fr. 180: 483–500. [CrossRef] [Google Scholar]
  • Guillot S, Ménot RP. 2009. Paleozoic evolution of the External Crystalline Massifs of the Western Alps. C. R. Geosci. 341: 253–265. [CrossRef] [Google Scholar]
  • Henk A. 2000. Foreland-directed lower-crustal flow and its implications for the exhumation of high-pressure-high-temperature rocks. Geol. Soc. Lond. Spec. Publ. 179: 355–368. https://doi.org/10.1144/GSL.SP.2000.179.01.21. [CrossRef] [Google Scholar]
  • Jacob JB. 2022. Quelle place pour les Massifs Cristallins Externes des Alpes occidentales dans l’orogenèse varisque ? PhD Thesis, Université de Grenoble. [Google Scholar]
  • Jacob JB, Guillot S, Rubatto D, Janots E, Melleton J, Faure M. 2021. Carboniferous high-pressure metamorphism and deformation in the Belledonne Massif (Western Alps). J. Metamorph. Geol. 39: 1009–1044. https://doi.org/10.1111/jmg.12600. [CrossRef] [Google Scholar]
  • Jacob JB, Janots E, Guillot S, Rubatto D, Fréville K, Melleton J, et al. 2022. HT overprint of HP granulites in the Oisans-Pelvoux Massif: Implications for the dynamics of the Variscan collision in the external Western Alps. https://doi.org/10.1016/j.lithos.2022.106650. [Google Scholar]
  • Jouffray F, Spalla MI, Lardeaux JM, Filippi M, Rebay G, Corsini M, et al. 2020. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): A dismembered cryptic suture zone. Int. J. Earth Sci. 109: 1273–1294. https://doi.org/10.1007/s00531-020-01848-2. [CrossRef] [Google Scholar]
  • Kalt A, Berger A, Blumel P. 1999. Metamorphic evolution of cordierite-bearing migmatites from the Bayerische Wald (Variscan Belt, Germany). J. Petrol. 40: 601–627. [CrossRef] [Google Scholar]
  • Kretz R. 1983. Symbols of rock-forming minerals. Am. Miner. 68: 277–279. [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janouzek V, Lexa O, Skrzypek E, et al. 2014. The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: Differences and similarities. Geol. Soc. Lond. Spec. Publ. 405: 7–44. https://doi.org/10.1144/SP405.14. [CrossRef] [Google Scholar]
  • Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM, Vanderhaeghe O, et al. 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics 342(3-4): 207–237. [CrossRef] [Google Scholar]
  • Le Fort P. 1973. Géologie du Haut-Dauphiné cristallin (Alpes française) : études pétrologique et structurale de la partie occidentale. PhD Thesis, Université Nancy I. [Google Scholar]
  • Lemoine M. 1988. Des nappes embryonnaires aux blocs basculés : évolution des idées et des modèles sur l’histoire mésozoïque des Alpes occidentales. G-Alp. 8: 787–797. [Google Scholar]
  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, et al. 1986. The continental margin of the Mesozoic Tethys in the Western Alps. Mar. Pet. Geol. 3: 179–199. [CrossRef] [Google Scholar]
  • Linnemann U, Gerdes A, Hofmann M, Marko L. 2014. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton-Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res. 244: 236–278. https://doi.org/10.1016/j.precamres.2013.08.007. [CrossRef] [Google Scholar]
  • Lombardo B, Colombo F, Compagnoni R, Ghiglione G, Rubatto D. 1997. Relics of pre-Variscan events in the Malinvern-Argentera Complex, Argentera Massif, Western Alps. Quaderni di Geodinamica Alpina e Quaternaria 4: 66. [Google Scholar]
  • Manzotti P, Ballèvre M, Poujol M. 2016. Detrital zircon geochronology in the Dora-Maira and Zone Houillère: A record of sediment travel paths in the Carboniferous. Terra Nova 28: 279–288. [CrossRef] [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196: 309–307. [CrossRef] [Google Scholar]
  • Matte P. 2001. The varisacn collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 13: 122–128. [CrossRef] [Google Scholar]
  • Matte P. 2007. Variscan thrust nappes, detachment, and strike-slip faults in the French Massi Central: Interpretation of lineations. Geol. Soc. Am. Mem. 200: 391–402. [Google Scholar]
  • Melleton J, Cocherie A, Faure M, Rossi P. 2010. Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res. 17: 13–25. [CrossRef] [Google Scholar]
  • Ménot RP. 1988a. An overview of the geology of the Belledonne Massif (External Crystalline Massifs of western Alps). Schweiz Miner. Petrogr. Mitt 70: 33–53. [Google Scholar]
  • Ménot RP. 1988b. Magmatisme paléozoïque et structuration carbonifère du massif de Belledonne (Alpes françaises). Contraintes nouvelles pour les schémas d’évolution de la chaîne varisque Ouest-Européenne. Mémoire et documents du centre armoricain d’étude structurale des socles. Rennes. [Google Scholar]
  • Ménot RP. 1987. Magmatismes et structuration orogénique Paléozoïques de la Chaîne de Belledonne (Massifs cristallins externes alpins). Le Domaine Sud-Occidental. G-Alp. 63: 55–93. [Google Scholar]
  • Oberli F, Meier M, Biino GG. 1994. Time constraints on the pre-Variscan magmatic/metamorphic evolution of the Gotthard and Tavetsch units derived from U-Pb results. Schweiz. Miner. Petrogr. Mitt. 74: 483–488. [Google Scholar]
  • Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y. 2015. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin de la Société géologique de France 186(2-3): 145–169. [CrossRef] [Google Scholar]
  • Padovano M, Elter FM, Pandeli E, Franceshelli M. 2012. The East Variscan Shear Zone: New insights into its role in the Late Carboniferous collision in southern Europe. Int. Geol. Rev. 54: 957–970. [CrossRef] [Google Scholar]
  • Padovano M, Dörr W, Elter FM, Gerdes A. 2014. The East Variscan Shear Zone: Geochronological constraints from the Capo Ferro area (NE Sardinia, Italy). Lithos 196-197: 27–41. [CrossRef] [Google Scholar]
  • Paquette JL, Ménot RP, Peucat JJ. 1989. R.E.E., Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps) evidence for crustal contamination. Earth Planet. Sci. Lett. 96: 181–198. [CrossRef] [Google Scholar]
  • Paris F Robardet, M. 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. Tectonophysics 1977: 193–213. [CrossRef] [Google Scholar]
  • Pecher A. 1970. Étude pétrographique de la partie orientale du massif des Ecrins-Pelvoux: le socle ancien – Alpes françaises. Thesis, Faculté des Sciences de l’Université de Grenoble, pp. 151. [Google Scholar]
  • Pecher A, Vialon P. 1970. Présence de gneiss du « faciès granulite » dans le noyau précambrien du massif des Écrins-Pelvoux (Alpes du Dauphiné, France). C. R. Acad. Sci. Paris 270: 666–668. [Google Scholar]
  • Pin C, Carme F. 1987. A Sm-Nd isotopic study of 500 Ma old oceanic crust in the Variscan belt of Western Europe: The Chamrousse ophiolite complex, Western Alps (France). Contrib. Miner. Petrol. 96: 406–413. [CrossRef] [Google Scholar]
  • Poitrasson F, Chenery SR, Shepherd TJ. 2000. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochim. Cosmochim. Acta 64: 3283–3297. [CrossRef] [Google Scholar]
  • Rabin M, Trap P, Carry N, Fréville K, Cenki-Tok B, Lobjoie C, et al. 2015. Strain partitioning along the anatectic front in the Variscan Montagne Noire Massif (southern French Massif Central). Tectonics 34: 2014TC003790. https://doi.org/10.1002/2014TC003790. [Google Scholar]
  • Roger F, Respaut JP, Brunal M, Matte P, Paquette JL. 2004. Première datation U-Pb des orthogneiss oeillés de la zone axiale de la Montagne noire (Sud du Massif central) : nouveaux témoins du magmatisme ordovicien dans la chaîne Varisque. C. R. Geosci. 336: 19–28. [CrossRef] [Google Scholar]
  • Rolland Y, Corsini M, Demoux A, 2009. Metamorphic and structural evolution of the Maures-Tanneron Massif (SE Variscan chain): Evidence of doming along a transpressional margin: Bull. Soc. Geol. Fr. 3: 217–230. [CrossRef] [Google Scholar]
  • Rossi P, Oggiano G, Cocherie A. 2009. A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. Comptes Rendus Géoscience 341(2-3): 224–238. [CrossRef] [Google Scholar]
  • Rubatto D, Ferrando S, Compagnoni R, Lombardo B. 2010. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt. Lithos 116: 65–76. https://doi.org/10.1016/j.lithos.2009.12.013. [CrossRef] [Google Scholar]
  • Sanchez G, Rolland Y, Jolivet M, Brichau S, Corsini M, Carter A. 2011. Exhumation controlled by transcurrent tectonics: the Argentera-Mercantour massif (SW Alps). Terra Nova 23(2): 116–126. [Google Scholar]
  • Schaltegger U. 1993. The evolution of the polymetamorphic basement in the central Alps unravelled by precise U-Pb zircon dating. Contrib. Miner. Petrol. 113: 466–478. [CrossRef] [Google Scholar]
  • Schnapperelle S, Mezger JE, Stipp M, Hofmann M, Gärtner A, Linnemann U. 2020 Polyphase magmatic pulses along the Northern Gondwana margin: U-Pb zircon geochronology from gneiss domes of the Pyrenees. Gondwana Res. 81: 291–311. [CrossRef] [Google Scholar]
  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux JM. 2014. Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France). Geol. Soc. Lond. Spec. Publ. 405: 313–331. https://doi.org/10.1144/SP405.4. [CrossRef] [Google Scholar]
  • Sergeev SA, Steiger RH. 1993. High-precision U-Pb single zircon dating of Variscan and Caledonian magmatic cycles in the Gotthard Massif, Central Swiss Alps. Terra Nova 5: 394–395. [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Langone A, D’Addario E, Mammoliti E. 2018. Kinematic and geochronological constraints on shear deformation in the Ferrière-Mollières Shear Zone (Argentera-Mercantour Massif, Western Alps): Implications for the evolution of the Southern European Variscan Belt. Int. J. Earth Sci. 107: 2163–2189. https://doi.org/10.1007/s00531-018-1593-y. [CrossRef] [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Cottle JM, Law RD. 2020a. Transpressive deformation in the Southern European Variscan Belt: New insights from the Aiguilles-Rouges Massif (Western Alps). Tectonics 39. https://doi.org/10.1029/2020TC006153. [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle JM, et al. 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int. J. Earth Sci. 109: 2261–2285. https://doi.org/10.1007/s00531-020-01898-6. [CrossRef] [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Lawd RD, Cottle JM. 2021. Unravelling the development of regional-scale shear zones by a multidisciplinary approach: The case study of the Ferrière-Mollières Shear Zone (Argentera Massif, Western Alps). J. Struct. Geol. 149: 104399. [CrossRef] [Google Scholar]
  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249: 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005. [CrossRef] [Google Scholar]
  • Stampfli GM, Hochard C, Vérard C, Wilhem C, Von Raumer JF. 2013. The formation of Pangea. Tectonophysics 593: 1–19. [CrossRef] [Google Scholar]
  • Stephan T, Kroner U, Romer RL. 2019. The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geol. Mag. 156: 281–307. https://doi.org/10.1017/S0016756818000031. [CrossRef] [Google Scholar]
  • Stipp M, Stunitz H, Heilbronner R, Schmid S. 2002. Dynamic recrystallization of quartz: Correlation between natural and experimental conditions. In: De Meer S, Drury MR, De Bresser JHP, Pennock GM, eds. Deformation mechanisms, rheology and tectonics: Current statusand future perspectives. Geol. Soc. Lond. Spec. Publ. 200, pp. 171–190. [Google Scholar]
  • Strzerzynski P, Guillot S, Courrioux G, Ledru P. 2005. Modélisation géométrique 3D des granites stéphaniens du massif du Pelvoux (Alpes, France). C. R. Geosci. 337: 1284–1292. [CrossRef] [Google Scholar]
  • Tait J, Schatz M, Bachtadse V, Soffel H. 2000. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. Geol. Soc. Lond. Spec. Publ. 179: 21–31. [CrossRef] [Google Scholar]
  • Tait JA, Bachtadse V, Franke W, Soffel HC. 1997. Geodynamic evolution of the European Variscan fold belt: Palaeomagnetic and geological constraints. Geol. Rundsch. 86: 585–598. [CrossRef] [Google Scholar]
  • Trap P, Roger F, Cenki-Tok B, Paquette JL. 2017. Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). Int. J. Earth Sci. 106: 453–476. [CrossRef] [Google Scholar]
  • Vanardois J. 2021. Fusion partielle, transfert de magma et partitionnement de la déformation dans la croûte tardi-orogénique. Exemple des massifs des Aiguilles-Rouges (Alpes) et de l’Agly (Pyrénées) dans la chaîne Varisque. PhD Thesis, Université de Franche-Comté, France, pp. 487. [Google Scholar]
  • Vanardois J, Roger F, Trap P, Goncalves P, Lanari P, Paquette JL, et al. 2022. Variscan eclogites from Aiguilles-Rouges Massif (Western Alps): Witnesses of exhumation of deep crust through strike-slip shear zone. J. Metamorph. Geol. [Google Scholar]
  • Vanderhaeghe O, Burg JP, Teyssier, C. 1999. Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. Geological Society, London, Special Publications 154(1): 181–204. [CrossRef] [Google Scholar]
  • Vanderhaeghe O, Laurent O, Gardien V, Moyen JF, Gébelin A, Chelle-Michou C, et al. 2020. Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central [Impact du fluage de la croûte partiellement fondue sur la construction, la croissance et l’effondrement de la ceinture orogénique Varisque : l’enregistrement géologique du Massif Central français]. Bulletin de la Société géologique de France 191(1). [Google Scholar]
  • Von Raumer JF, Bussy F. 2004. Mont-Blanc and Aiguilles-Rouges: Geology of their polymetamorphic basement (External massifs, France-Switzerland): Mémoires de Géologie (Lausanne) 42: 1–203. [Google Scholar]
  • Von Raumer JF, Albrecht J, Bussy F, Lombardo B, Ménot RP, Schaltegger U. 1999. The Palaeozoic metamorphic evolution of the Alpine External Massifs. Schweiz. Miner. Petrog. Mitt. 79: 5–22. [Google Scholar]
  • Von Raumer JF, Stampfi GM, Bussy F. 2003. Gondwana-derived microcontinents, the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365: 7–22. [CrossRef] [Google Scholar]
  • Von Raumer JF, Bussy F, Scaltegger U, Schulz B, Stampfli GM. 2013. Pre-Mesozoic Alpine basements? Their place in the European Paleozoic framework. GSA Bull. 125: 89–108. [CrossRef] [Google Scholar]
  • Von Raumer JF, Stampfli GM, Arenas R, Martínez SS. 2015. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 104: 1107–1121. [CrossRef] [Google Scholar]
  • Villaros A, Laurent O, Couzinié S, Moyen JF, Mintrone M. 2018. Plutons and domes: The consequences of anatectic magma extraction – Example from the southeastern French Massif Central. International Journal of Earth Sciences 107(8): 2819–2842. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB, Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 18: 497–511. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR. 2014. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32: 261–286. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.