Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 193, 2022
|
|
---|---|---|
Numéro d'article | 12 | |
Nombre de pages | 21 | |
DOI | https://doi.org/10.1051/bsgf/2022015 | |
Publié en ligne | 12 août 2022 |
- Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chemical Geology 71: 211–222. https://doi.org/10.1016/0009-2541(88)90116-7. [CrossRef] [Google Scholar]
- Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK. 1990. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Applied Geochemistry 5: 625–630. https://doi.org/10.1016/0883-2927(90)90060-I. [CrossRef] [Google Scholar]
- Aktïmur HT, Tekïrlï ME, Yurdakul ME. 1990. Geology of the Sivas-Erzincan Tertiary basin. Bulletin of the Mineral Research and Exploration Institute of Turkey, Ankara 111: 21–30. [Google Scholar]
- Allen DE, Seyfried WE. 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400 °C, 500 bars. Geochimica et Cosmochimica Acta 67: 1531–1542. https://doi.org/10.1016/S0016-7037(02)01173-0. [CrossRef] [Google Scholar]
- Andreani M, Muñoz M, Marcaillou C, Delacour A. 2013. µXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178: 70–83. https://doi.org/10.1016/j.lithos.2013.04.008. [CrossRef] [Google Scholar]
- Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, et al. 2014. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14′N). Geochem. Geophys. Geosyst. 15: 3543–3571. https://doi.org/10.1002/2014GC005269. [CrossRef] [Google Scholar]
- Artemyev DA, Zaykov VV. 2010. The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc (South Urals). Russian Geology and Geophysics 51: 750–763. https://doi.org/10.1016/j.rgg.2010.06.003. [CrossRef] [Google Scholar]
- Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M. 2004. Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochemistry, Geophysics, Geosystems 5. https://doi.org/10.1029/2004GC000744. [Google Scholar]
- Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE. 2006. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33: L13306. https://doi.org/10.1029/2006GL025681. [CrossRef] [Google Scholar]
- Barnes I, Lamarche VC, Himmelberg G. 1967. Geochemical evidence of present-day serpentinization. Science 156: 830–832. https://doi.org/10.1126/science.156.3776.830. [CrossRef] [Google Scholar]
- Bernoulli D, Weissert H. 2021. Oxygen isotopes in ophicalcites: an ever-lasting controversy? Int J Earth Sci (Geol Rundsch) 110: 1–8. https://doi.org/10.1007/s00531-020-01934-5. [CrossRef] [Google Scholar]
- Bruni J, Canepa M, Chiodini G, Cioni R, Cipolli F, Longinelli A, et al. 2002. Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO3 and high-pH, Ca-OH spring waters of the Genova province, Italy. Applied Geochemistry 17: 455–474. https://doi.org/10.1016/S0883-2927(01)00113-5. [CrossRef] [Google Scholar]
- Callot J-P., Ribes C, Kergaravat C, Bonnel C, Temiz H, Poisson A, et al. 2014. Salt tectonics in the Sivas basin (Turkey): crossing salt walls and minibasins. Bulletin de la Société géologique de France 185: 33–42. https://doi.org/10.2113/gssgfbull.185.1.33. [CrossRef] [Google Scholar]
- Cannat M, Fontaine F, Escartín J. 2010. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In: Rona PA, Devey CW, Dyment J, Murton BJ, eds. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, pp. 241–264. https://doi.org/10.1029/2008GM000760. [Google Scholar]
- Cardace D, Meyer-Dombard DR, Woycheese KM, Arcilla CA. 2015. Feasible metabolisms in high pH springs of the Philippines. Front Microbiol 6 https://doi.org/10.3389/fmicb.2015.00010. [CrossRef] [Google Scholar]
- Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology 191: 345–359. https://doi.org/10.1016/S0009-2541(02)00134-1. [CrossRef] [Google Scholar]
- Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G. 2013. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems 14: 2496–2522. https://doi.org/10.1002/ggge.20147. [CrossRef] [Google Scholar]
- Cipolli F, Gambardella B, Marini L, Ottonello G, Vetuschi Zuccolini M. 2004. Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Applied Geochemistry 19: 787–802. https://doi.org/10.1016/j.apgeochem.2003.10.007. [CrossRef] [Google Scholar]
- Coltat R, Boulvais P, Branquet Y, Collot J, Epin ME, Manatschal G. 2019. Syntectonic carbonation during syn-magmatic mantle exhumation at an ocean-continent transition. Geology 47: 183–186. https://doi.org/10.1130/G45530.1. [CrossRef] [Google Scholar]
- Coltat R, Branquet Y, Gautier P, Boulvais P, Manatschal G. 2020. The nature of the interface between basalts and serpentinized mantle in oceanic domains: Insights from a geological section in the Alps. Tectonophysics 228646. https://doi.org/10.1016/j.tecto.2020.228646. [Google Scholar]
- Combaudon V, Moretti I, Kleine BI, Stefánsson A. 2022. Hydrogen emissions from hydrothermal fields in Iceland and comparison with the Mid-Atlantic Ridge. International Journal of Hydrogen Energy 47: 10217–10227. https://doi.org/10.1016/j.ijhydene.2022.01.101. [CrossRef] [Google Scholar]
- D’Antonio M, Kristensen MB. 2004. Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineral Mag 68: 887–904. https://doi.org/10.1180/0026461046860229. [CrossRef] [Google Scholar]
- Darin MH, Umhoefer PJ, Thomson SN. 2018. Rapid Late Eocene exhumation of the Sivas Basin (Central Anatolia) driven by Initial Arabia-Eurasia collision. Tectonics 37: 3805–3833. https://doi.org/10.1029/2017TC004954. [CrossRef] [Google Scholar]
- Debure M, Lassin A, Marty NC, Claret F, Virgone A, Calassou S, Gaucher EC. 2019. Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation. Sci Rep 9: 11720. https://doi.org/10.1038/s41598-019-48138-9. [CrossRef] [Google Scholar]
- Deville E, Prinzhofer A. 2016. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia. Chemical Geology 440: 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011. [CrossRef] [Google Scholar]
- Deville EP, Prinzhofer A, Pillot D, Vacquand C, Sissmann O. 2010. Peridote-water interaction generating migration pathways of H2-rich fluids in subduction context: common processes in the ophiolites of Oman, New-Caledonia, Philippines and Turkey. AGU Fall Meeting Abstracts 13: T13A–T2184. [Google Scholar]
- Etiope G, Schoell M, Hosgörmez H. 2011. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth and Planetary Science Letters 310: 96–104. https://doi.org/10.1016/j.epsl.2011.08.001. [CrossRef] [Google Scholar]
- Etiope G, Tsikouras B, Kordella S, Ifandi E, Christodoulou D, Papatheodorou G. 2013. Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chemical Geology 347: 161–174. https://doi.org/10.1016/j.chemgeo.2013.04.003. [CrossRef] [Google Scholar]
- Frost BR. 1985. On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite. J Petrol 26: 31–63. https://doi.org/10.1093/petrology/26.1.31. [CrossRef] [Google Scholar]
- Frost BR, Beard JS. 2007. On Silica Activity and Serpentinization. Journal of Petrology 48: 1351–1368. https://doi.org/10.1093/petrology/egm021. [CrossRef] [Google Scholar]
- Frost BR, Evans KA, Swapp SM, Beard JS, Mothersole FE. 2013. The process of serpentinization in dunite from New Caledonia. Lithos, Serpentinites from mid-oceanic ridges to subduction 178: 24–39. https://doi.org/10.1016/j.lithos.2013.02.002. [Google Scholar]
- Gaucher EC. 2020. New Perspectives in the Industrial Exploration for Native Hydrogen. Elements 16: 8–9. https://doi.org/10.2138/gselements.16.1.8. [CrossRef] [Google Scholar]
- Hopkinson LJ, Dee S, Boulter CA. 2000. Moving reactive interfaces and fractal carbonate replacement patterns in serpentinites: evidence from the southern Iberia Abyssal Plain. Mineral Mag 64: 791–800. https://doi.org/10.1180/002646100549797. [CrossRef] [Google Scholar]
- Hosgormez H, Etiope G, Yalçin MN. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8: 263–273. https://doi.org/10.1111/j.1468-8123.2008.00226.x. [CrossRef] [Google Scholar]
- İnan S, İnan N. 1990. The features of Gürlevik limestone and a newly suggested name in Tecer formation. Bulletin of Turkish Geological Society 15: 406–417. [Google Scholar]
- Kavak KŞ, Parlak O, Temiz H. 2017. Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the Inner Tauride Ocean, Central-Eastern Turkey. Geodinamica Acta 29: 160–180. https://doi.org/10.1080/09853111.2017.1359773. [CrossRef] [Google Scholar]
- Kergaravat C, Ribes C, Callot J-P., Ringenbach J-C. 2017. Tectono-stratigraphic evolution of salt-controlled minibasins in a fold and thrust belt, the Oligo-Miocene central Sivas Basin. Journal of Structural Geology 102: 75–97. https://doi.org/10.1016/j.jsg.2017.07.007. [CrossRef] [Google Scholar]
- Kergaravat C, Ribes C, Legeay E, Callot J-P., Kavak KS, Ringenbach J-C. 2016. Minibasins and salt canopy in foreland fold-and-thrust belts: The central Sivas Basin, Turkey. Tectonics 35: 1342–1366. https://doi.org/10.1002/2016TC004186. [CrossRef] [Google Scholar]
- Kim S-T., O’Neil JR. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61: 3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5. [CrossRef] [Google Scholar]
- Klein F, Bach W, Humphris SE, Kahl W-A., Jöns N, Moskowitz B, et al. 2014. Magnetite in seafloor serpentinite—Some like it hot. Geology 42: 135–138. https://doi.org/10.1130/G35068.1. [CrossRef] [Google Scholar]
- Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T. 2009. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 73: 6868–6893. https://doi.org/10.1016/j.gca.2009.08.021. [CrossRef] [Google Scholar]
- Klein F, Bach W, McCollom TM. 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178: 55–69. https://doi.org/10.1016/j.lithos.2013.03.008. [CrossRef] [Google Scholar]
- Lafay R, Baumgartner LP, Stephane S, Suzanne P, German M-H., Torsten V. 2017. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): processes of carbonate cementation. Lithos 294–295: 319–338. https://doi.org/10.1016/j.lithos.2017.10.006. [CrossRef] [Google Scholar]
- Lefebvre C, Barnhoorn A, van Hinsbergen DJJ, Kaymakci N, Vissers RLM. 2011. Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, central Turkey. Journal of Structural Geology 33: 1220–1236. https://doi.org/10.1016/j.jsg.2011.06.002. [CrossRef] [Google Scholar]
- Legeay E. 2017. Géodynamique du Bassin de Sivas (Turquie)—De la fermeture d’un domaine océanique à la mise en place d’un avant-pays salifère. France: UPPA. [Google Scholar]
- Legeay E, Mohn G, Callot J, Ringenbach J, Ulianov A, Kavak KS. 2019. The Pre-Obduction to Post-Obduction Evolution of the Sivas Ophiolite (Turkey) and Implications for the Precollisional History of Eastern Anatolia. Tectonics 38: 2114–2141. https://doi.org/10.1029/2018TC005114. [CrossRef] [Google Scholar]
- Leila M, Lévy D, Battani A, Piccardi L, Šegvić B, Badurina L, et al. 2021. Origin of continuous hydrogen flux in gas manifestations at the Larderello geothermal field, Central Italy. Chemical Geology 585: 120564. https://doi.org/10.1016/j.chemgeo.2021.120564. [CrossRef] [Google Scholar]
- Lemoine M, Tricart P, Boillot G. 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic model. Geol. 15: 622. https://doi.org/10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2. [CrossRef] [Google Scholar]
- Manatschal G, Froitzheim N, Rubenach M, Turrin BD. 2001. The role of detachment faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain. Geological Society, London, Special Publications 187: 405–428. https://doi.org/10.1144/GSL.SP2001.187.01.20. [CrossRef] [Google Scholar]
- McCollom TM, Seewald JS. 2007. Abiotic Synthesis of Organic Compounds in Deep-Sea Hydrothermal Environments. Chem Rev 107: 382–401. https://doi.org/10.1021/cr0503660. [CrossRef] [Google Scholar]
- Meyer-Dombard DR, Woycheese KM, Yargıçoğlu EN, Cardace D, Shock EL, Güleçal-Pektas Y, et al. 2015. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00723. [Google Scholar]
- Moody JB. 1976. Serpentinization: a review. Lithos 9: 125–138. https://doi.org/10.1016/0024-4937(76)90030-X. [CrossRef] [Google Scholar]
- Moretti I. 2019. H2: energy vector or source? L’Actualité chimique. [Google Scholar]
- Neal C, Stanger G. 1983. Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters 66: 315–320. https://doi.org/10.1016/0012-821X(83)90144-9. [CrossRef] [Google Scholar]
- Noël J. 2019. Étude pétro-structurale et géochimique des processus de serpentinisation et de carbonatation des péridotites de l’ophiolite d’Oman, dissertation. [Google Scholar]
- O’Hanley DS. 1992. Solution to the volume problem in serpentinization. Geology 20: 705–708. https://doi.org/10.1130/0091-7613(1992)020<0705:STTVPI>2.3.CO;2. [CrossRef] [Google Scholar]
- Oufi O, Cannar M, Horen H. 2002. Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res 107: 2095. https://doi.org/10.1029/2001JB000549. [CrossRef] [Google Scholar]
- Parlak O. 2016. The tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27: 901–934. https://doi.org/10.1007/s12583-016-0679-3. [CrossRef] [Google Scholar]
- Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234: 179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011. [CrossRef] [Google Scholar]
- Picazo S, Malvoisin B, Baumgartner L, Bouvier A-S. 2020. Low Temperature Serpentinite Replacement by Carbonates during Seawater Influx in the Newfoundland Margin. Minerals 10: 184. https://doi.org/10.3390/min10020184. [CrossRef] [Google Scholar]
- Pichat A. 2017. Dynamique des systèmes évaporitiques d’un bassin d’avant-pays salifère et processus diagénétiques associés au contexte halocinétique : exemple du bassin de Sivas en Turquie. France: UPPA. [Google Scholar]
- Pichat A, Hoareau G, Callot J-P., Legeay E, Kavak KS, Révillon S, et al. 2018. Evidence of multiple evaporite recycling processes in a salt-tectonic context, Sivas Basin, Turkey. Terra Nova 30: 40–49. https://doi.org/10.1111/ter.12306. [CrossRef] [Google Scholar]
- Pichat A, Hoareau G, Lopez M, Callot J-P., Ringenbach J-C. 2021. Sedimentology and depositional environment of the Late Eocene marine siliciclastic to evaporite transition in the Sivas Basin (Turkey). Marine and Petroleum Geology 131: 105151. https://doi.org/10.1016/j.marpetgeo.2021.105151. [CrossRef] [Google Scholar]
- Pucéat E, Lécuyer C, Sheppard SMF, Dromart G, Reboulet S, Grandjean P. 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18. https://doi.org/10.1029/2002PA000823. [Google Scholar]
- Renard F. 2021. Reaction-induced fracturing: when chemistry breaks rocks. J Geophys Res Solid Earth 126. https://doi.org/10.1029/2020JB021451. [CrossRef] [Google Scholar]
- Ribes C. 2015. Interaction entre la tectonique salifère et la sédimentation dans des mini-bassins : exemple de l’Oligo-Miocène du bassin de Sivas, Turquie. France: UPPA. [Google Scholar]
- Ribes C, Kergaravat C, Bonnel C, Crumeyrolle P, Callot J-P., Poisson A, et al. 2015. Fluvial sedimentation in a salt-controlled mini-basin: stratal patterns and facies assemblages, Sivas Basin, Turkey. Sedimentology 62: 1513–1545. https://doi.org/10.1111/sed.12195. [CrossRef] [Google Scholar]
- Ribes C, Lopez M, Kergaravat C, Crumeyrolle P, Poisson A, Callot J-P, et al. 2018. Facies partitioning and stratal pattern in salt-controlled marine to continental mini-basins: examples from the Late Oligocene to Early Miocene of the Sivas Basin, Turkey. Marine and Petroleum Geology 93: 468–496. https://doi.org/10.1016/j.marpetgeo.2018.03.018. [CrossRef] [Google Scholar]
- Ringenbach J-C., Salel J-F., Kergaravat C, Ribes C, Bonnel C, Callot J-P. 2013. Salt tectonics in the Sivas Basin, Turkey: outstanding seismic analogues from outcrops. First Break 31. https://doi.org/10.3997/1365-2397.2013016. [Google Scholar]
- Rouméjon S, Cannat M. 2014. Serpentinization of mantle-derived peridotites at mid-ocean ridges: mesh texture development in the context of tectonic exhumation. Geochem Geophys Geosyst 15: 2354–2379. https://doi.org/10.1002/2013GC005148. [CrossRef] [Google Scholar]
- Rouméjon S, Cannat M, Agrinier P, Godard M, Andreani M. 2015. Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62–65°E). J Petrol 56: 703–734. https://doi.org/10.1093/petrology/egv014. [CrossRef] [Google Scholar]
- Sano Y, Urabe A, Wakita H, Wushiki H. 1993. Origin of hydrogen-nitrogen gas seeps, Oman. Applied Geochemistry 8: 1–8. https://doi.org/10.1016/0883-2927(93)90053-J. [CrossRef] [Google Scholar]
- Schrenk MO, Brazelton WJ, Lang SQ. 2013. Serpentinization, Carbon, and Deep Life. Reviews in Mineralogy and Geochemistry 75: 575–606. https://doi.org/10.2138/rmg.2013.75.18. [CrossRef] [Google Scholar]
- Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, et al. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178: 197–210. https://doi.org/10.1016/j.lithos.2012.11.023. [CrossRef] [Google Scholar]
- Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Plas A. 2013. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chemical Geology 351: 115–133. https://doi.org/10.1016/j.chemgeo.2013.05.016. [CrossRef] [Google Scholar]
- Seyfried WE, Foustoukos DI, Fu Q. 2007. Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200 °C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta 71: 3872–3886. https://doi.org/10.1016/j.gca.2007.05.015. [CrossRef] [Google Scholar]
- Szponar N, Brazelton WJ, Schrenk MO, Bower DM, Steele A, Morrill PL. 2013. Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue. Icarus, Terrestrial Analogs for Mars: Mars Science Laboratory and Beyond 224: 286–296. https://doi.org/10.1016/j.icarus.2012.07.004. [Google Scholar]
- Taber S. 1916. The growth of Crystals under external pressure. Growth of Crystals 532–556. [Google Scholar]
- Vacquand C, Deville E, Beaumont V, Guyot F, Sissmann O, Pillot D, et al. 2018. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta 223: 437–461. https://doi.org/10.1016/j.gca.2017.12.018. [CrossRef] [Google Scholar]
- van Hinsbergen DJJ, Maffione M, Plunder A, Kaymakcı N, Ganerød M, Hendriks BWH, et al. 2016. Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35: 983–1014. https://doi.org/10.1002/2015TC004018. [CrossRef] [Google Scholar]
- Veizer J, Prokoph A. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews 146: 92–104. https://doi.org/10.1016/j.earscirev.2015.03.008. [CrossRef] [Google Scholar]
- Warren JK. 2016. Evaporites: a Geological Compendium. Springer. [Google Scholar]
- White WM. 2015. Isotope Geochemistry. Wiley. [Google Scholar]
- Wiltschko DV, Morse JW. 2001. Crystallization pressure versus “crack seal” as the mechanism for banded veins 4. [Google Scholar]
- Worman SL, Pratson LF, Karson JA, Schlesinger WH. 2020. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere. PNAS 117: 13283–13293.. https://doi.org/10.1073/pnas.2002619117. [CrossRef] [Google Scholar]
- Woycheese KM, Meyer-Dombard DR, Cardace D, Argayosa AM, Arcilla CA. 2015. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol 6 https://doi.org/10.3389/fmicb.2015.00044. [CrossRef] [Google Scholar]
- Yaliniz MK, Göncüoğlu MC, Özkan-Altiner S. 2000. Formation and emplacement ages of the SSZ-type Neotethyan ophiolites in Central Anatolia, Turkey: palaeotectonic implications. Geological Journal 35: 53–68. https://doi.org/10.1002/1099-1034(200004/06)35:2<53::AID-GJ837>3.0.CO;2-6. [CrossRef] [Google Scholar]
- Zgonnik V. 2020. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Science Reviews 203: 103140. https://doi.org/10.1016/j.earscirev.2020.103140. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.