Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 194, 2023
Numéro d'article 10
Nombre de pages 29
DOI https://doi.org/10.1051/bsgf/2023006
Publié en ligne 3 juillet 2023
  • Avigad D, Gerdes A, Morag N, Bechstädt T. 2012. Coupled U-Pb-Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondw Res 21: 690–703. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341: 174–201. [CrossRef] [Google Scholar]
  • Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. Geol. Soc. Lond. 159: 77–133. [CrossRef] [Google Scholar]
  • Bard JP, Caruba C. 1981. Les séries leptyno-amphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie ? C R Acad Sci Paris 292: 611–614. [Google Scholar]
  • Bard JP, Caruba C. 1982. Texture et minéralogie d’une éclogite à disthène-saphirine-hypersténe-quartz en inclusion dans les gneiss migmatitites des Cavaliéres, massif de Ste Maxime (Maures, Var, France). C R Acad Sci Paris 294: 103–106. [Google Scholar]
  • Batanova VG, Sobolev AV, Magnin V. 2018. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy. IOP Conf Ser Mater Sci Eng 304: 012001. https://doi.org/10.1088/1757-899X/304/1/012001. [CrossRef] [Google Scholar]
  • Bearth P. 1959. Über Eklogite, Glaukophanschiefer und metamorphe Pillowlaven. Schweiz Mineral Petrogr Mitt 39: 267–286. [Google Scholar]
  • Bellot JP, Bronner G, Marchand J, Laverne C, Triboulet C. 2002. Thrust and normal faulting in the Western Maures (SE France): evidence for geometric, kinematics and thermobarometry of the Cavalaire shear zone. Géologie de la France 1: 21–37. [Google Scholar]
  • Bellot JP, Triboulet C, Laverne C, Bronner G. 2003. Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). Int J Earth Sci 92: 7–26. [CrossRef] [Google Scholar]
  • Bellot JP. 2005. The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. In: Carosi R, Dias R, Iacopini D, Rosenbaum G, eds. The Southern Variscan Belt. J Virt Expl 19. [Google Scholar]
  • Bellot JP, Laverne C, Bronner G. 2010. An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci 99: 473–504. [CrossRef] [Google Scholar]
  • Bodinier JL, Burg JP, Leyreloup A, Vidal H. 1988. Reliques d’un bassin d’arrière arc subducté puis obducté dans la région de Marvejols (Massif central). Bull Soc géol Fr 8(IV): 20–34. [Google Scholar]
  • Boland JN, Van Roermund HLM. 1983. Mechanisms of exsolution in omphacites from high temperature, type B, eclogites. Phys Chem Miner 9: 30–37. [CrossRef] [Google Scholar]
  • Bouloton J, Goncalves P, Pin C. 1998. Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales) : un cumulat d’affinité océanique impliqué dans la subduction éohercynienne ? C R Acad Sci Paris 326: 473–477. [Google Scholar]
  • Briand B, Bouchardon JL, Capiez P, Piboule M. 2002. Felsic (A-Type)-Basic (Plume-Induced) Early Palaeozoic bimodal magmatism in the Maures massif (southeastern France). Geol Mag 139: 291–311. [CrossRef] [Google Scholar]
  • Brown M. 2010. Paired metamorphic belts revisited. Gondw Res 18: 46–59. https://doi.org/10.1016/j.gr.2009.11.004. [CrossRef] [Google Scholar]
  • Buscail F. 2000. Contribution à la compréhension du problème géologique et géodynamique du massif des Maures : le métamorphisme régional modélisé dans le système KFMASH : analyse paragénétique, chémiographie, thermobarométrie, géochronologie Ar/Ar. Unpublished thesis. France: université Montpellier II. [Google Scholar]
  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB- N, AN-G and GH. Geost Geoan Res Wiley 25(2–3): 187–198. [CrossRef] [Google Scholar]
  • Carmignani L, Barsa S, Cappelli B, Di Pisa A, Gattiglio M, Oggiano G, et al. 1992. A tentative geodynamic model for the Hercynian basement of Sardinia. In: Carmignai L, Sassi FP, eds. Contributions to the Geology of Italy with special regard to the Palaeozoic basements. IGCP Project 276(5): 61–83. [Google Scholar]
  • Carosi R, Oggiano G. 2002. Transpressional deformation in NW Sardinia (Italy): insights on the tectonic evolution of the Variscan belt. C R Geosci 334: 273–278. [CrossRef] [Google Scholar]
  • Carosi R, Montomoli C, Tiepolo M, Frassi C. 2012. Geochronological constraints on post collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 24: 42–51. [CrossRef] [Google Scholar]
  • Caruba C. 1983. Nouvelles données pétrographiques, minéralogiques et géochimiques sur le massif métamorphique hercynien des Maures (Var, France) : comparaison avec les segments varisques voisins et essais d’interprétation géotectonique. Unpublished thesis. France: Université de Nice. [Google Scholar]
  • Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105: 715–737. [CrossRef] [Google Scholar]
  • Cocks LRM, Torsvik TH. 2002. Earth geography from 500 to 400 million years ago; a faunal and palaeomagnetic review. J Geol Soc Lond 159(6): 631–644. [CrossRef] [Google Scholar]
  • Coggon R, Holland JB. 2002. Mixing properties of phengitic micas and revised garnet phengite thermobarometers. J Metamorph Geol 20: 683–696. [CrossRef] [Google Scholar]
  • Coleman RG, Lee DE, Beatty LB, Brannock WW. 1965. Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76: 483–508. [CrossRef] [Google Scholar]
  • Collett S, Štípská P, Kusbach V, Schulmann K, Marciniak G. 2017. Dynamics of Saxothuringian subduction channel/wedge constrained by phase-equilibria modelling and micro-fabric analysis. J Metamorph Geol 35: 253–280. [CrossRef] [Google Scholar]
  • Collett S, Štípská P, Schulmann K, Peresty V, Soldner J, Anczkiewicz R, et al. 2018. Combined Lu-Hf and Sm-Nd geochronology of the Mariánské Lázně Complex: New constraints on the timing of eclogite-and granulite-facies metamorphism. Lithos 304: 74–94. https://doi.org/10.1016/j.lithos.2018.02.007. [CrossRef] [Google Scholar]
  • Collett S, Schulmann K, Štípská P, Míková J. 2020. Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondw Res 79: 27–48. https://doi.org/10.1016/j.gr.2019.09.009. [CrossRef] [Google Scholar]
  • Collett S, Schulmann K, Deiller P, Štípská P, Peresty V, Ulrich M, et al. 2022. Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European Variscan belt). Geoscience Frontiers 13(3). https://doi.org/10.1016/j.gsf.2022.101374. [CrossRef] [Google Scholar]
  • Corfu F, Hanchar JM, Hoskin PWO, Kinny PD. 2003. Atlas of zircon textures. Rev Mineral Geochem 53: 469–500. [CrossRef] [Google Scholar]
  • Corsini M, Rolland Y. 2009. Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. C R Geosci 341: 214–223. [CrossRef] [Google Scholar]
  • Corsini M, Bosse V, Féraud G, Demoux A, Crevola G. 2010. Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France). Int J Earth Sci 99: 327–341. [CrossRef] [Google Scholar]
  • Cortesogno L, Gaggero L, Oggiano G, Paquette JL. 2004. Different tectono-thermal evolutionary paths in eclogitic rocks from the axial zone of the variscan chain in Sardinia (Italy) compared with the ligurian Alps. Ofioliti 29(2): 125–144. [Google Scholar]
  • Costa S, Fulignati P, Campbell IH, Gioncada A, Carrasco Godoy CI, Pistolesi M, et al. 2021. Platinum-group element geochemistry of the shoshonitic igneous suite of Vulcano (Aeolian Arc, Italy): implications for chalcophile element fertility of arc magmas. Contrib Mineral Petrol 176: 106. https://doi.org/10.1007/s00410-021-01865-7. [CrossRef] [Google Scholar]
  • Couzinié S, Laurent O, Poujol M, Mintrone M, Chelle-Michou C, Moyen JF, et al. 2017. Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): implications for the crustal evolution of the north Gondwana margin. Lithos 286–287: 16–34. [CrossRef] [Google Scholar]
  • Crévola G, Pupin JP. 1994. Crystalline Provence: structure and Variscan evolution. In: Keppie JD, ed. Pre-Mesozoic Geology in France and Related Areas. Berlin: Springer Verlag, pp. 426–441. [CrossRef] [Google Scholar]
  • Cruciani G, Dini A, Franceschelli M, Puxeddu M, Utzeri D. 2010. Metabasite from the Variscan belt in NE Sardinia, Italy: within-plate OIB-like melts with very high Sr and low Nd isotope ratios. Eur J Mineral 22: 509–523. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Groppo C. 2011. P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 121: 135–150. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Massonne HJ, Carosi R, Montomoli C. 2013. Pressure-temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy. Lithos 175–176: 272–284. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Groppo C, Oggiano G, Spano ME. 2015. Re-equilibration history and P-T path of eclogites from Variscan Sardinia, Italy: a case study from the medium-grade metamorphic complex. Int J Earth Sci 104: 797–814. [CrossRef] [Google Scholar]
  • Cruciani G, Franceschelli M, Massonne HJ, Musumeci G. 2020. Evidence of two metamorphic cycles preserved in garnet from felsic granulite in the southern Variscan belt of Corsica, France. Lithos 380–381. https://doi.org/10.1016/j.lithos.2020.105919. [Google Scholar]
  • De Capitani C, Petrakakis K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95: 1006–1016. [CrossRef] [Google Scholar]
  • De Hoÿm de Marien L. 2019. Évolution pression-température-temps des unités varisques de haute-pression de l’est du Massif Central : implications géodynamiques. PhD Thesis. Université de Rennes. [Google Scholar]
  • Degeling H, Eggins S, Ellis DJ. 2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65(6): 749–758. https://doi.org/10.1180/0026461016560006. [CrossRef] [Google Scholar]
  • Del Moro A, Di Pisa A, Oggiano G, Villa IM. 1991. Isotopic ages of two constrained tectonometamorphic episode in the Variscan chain in N Sardinia. Geologia del basamento Italiano 33–35. [Google Scholar]
  • Demay, A. 1931. Les Nappes Cévenoles. Explications de la Carte Géologique détaillées, France. Paris: Imprimerie Nationale. [Google Scholar]
  • Diener JFA, Powell R, White RW, Holland TJB. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 25: 631–656. [CrossRef] [Google Scholar]
  • Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondw Res 36: 275–295. [CrossRef] [Google Scholar]
  • Domeier M, Torsvik TH. 2017. Full-plate modelling in pre-Jurassic time. Geol Mag 156(2): 261–280. https://doi.org/10.1017/S0016756817001005. [Google Scholar]
  • Dufour E, Lardeaux JM, Coffrant D. 1985. Eclogites and granulites in the Monts du Lyonnais area: an eo-hercynian plurifacial evolution. C R Acad Sci Paris 300: 141–144. [Google Scholar]
  • Edel JB, Casini L, Oggiano G, Rossi P, Schulmann K. 2014. Early Permian 90° clockwise rotation of the Maures-Estérel-Corsica-Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol Soc Spec Publ Lond 405: 333–361. [CrossRef] [Google Scholar]
  • Edel JB. Schulmann K, Lexa O, Diraison M, Géraud Y. 2015. Permian clockwise rotations of the Ebro and Corso-Sardinian blocks during Iberian-Armorican oroclinal bending: preliminary paleomagnetic data from the Catalan Coastal Range (NE Spain). Tectonophysics 657: 172–186. [CrossRef] [Google Scholar]
  • Edel JB, Schulmann K, Lexa O, Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth Sci Rev 177: 589–612. [CrossRef] [Google Scholar]
  • Elter M, Pandeli E. 2005. Structural-metamorphic correlations between three variscan segments in Southern Europe: Maures Massif (France), Corsica (France)–Sardinia (Italy), and Northern Appennines (Italy). J Virt Expl 9. [Google Scholar]
  • Ernst WG. 1971. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California, and the Alps. Contrib Mineral Petrol 34: 43–59. [CrossRef] [Google Scholar]
  • Ernst W, Liou J. 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am Mineral 93: 1771–1786. [CrossRef] [Google Scholar]
  • Ewing TA, Hermann J, Rubatto D. 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Mineral Petrol 165: 757–779. https://doi.org/10.1007/s00410-012-0834-5. [CrossRef] [Google Scholar]
  • Faryad SW, Klapova H, Nosal L. 2010. Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineral Mag 74: 111–126. [CrossRef] [Google Scholar]
  • Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot JY. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. J Virt Expl 19(5): 1–26. [Google Scholar]
  • Faure M, Lardeaux JM, Ledru P. 2009. A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341: 202–213. [CrossRef] [Google Scholar]
  • Faure M, Rossi P, Gaché J, Melleton J, Frei D, Li XH, et al. 2014. Variscan orogeny in Corsica: New structural and geochronological insights, and its place in the Variscan geodynamic framework. Int J Earth Sci 103: 1533–1551. https://doi.org/10.1007/s00531-014-1031-8. [CrossRef] [Google Scholar]
  • Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154: 429–437. [CrossRef] [Google Scholar]
  • Forestier FH, Lasnier B, Leyreloup PA, Marchand J. 1973. Vues nouvelles sur la catazone dans le Massif central français et le Massif armoricain de l’affleurement au Moho. Bull Soc géol Fr XV: 562–578. [CrossRef] [Google Scholar]
  • Franceschelli M, Puxeddu M, Cruciani G. 2005. Variscan metamorphism in Sardinia, Italy: review and discussion. J Virt Expl 19: paper 2. [Google Scholar]
  • Franceschelli M, Puxeddu M, Cruciani G, Utzeri D. 2007. Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: a review. Int J Earth Sci 96: 795–815 [CrossRef] [Google Scholar]
  • Franke W. 1989. Variscan plate tectonics in Central Europe − current ideas and open questions. Tectonophysics 169: 221–228. [CrossRef] [Google Scholar]
  • Franke W. 1995. Rhenohercynian foldbelt, autochthon and non metamorphic nappe units, III. B. 1 − stratigraphy. In: Dallmeyer D, Franke W, Weber K, eds. Pre-Permian Geology of Central and Western Europe. Berlin: Springer, pp. 33–49. [CrossRef] [Google Scholar]
  • Franke W, Cocks LRM, Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondw Res 48: 257–284. [CrossRef] [Google Scholar]
  • Franke W. 2000. The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Spec Publ Lond 179: 35–61. [CrossRef] [Google Scholar]
  • Gehrels G. 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Tectonics of Sedimentary Basins. John Wiley and Sons, Ltd., pp. 45–62. https://doi.org/10.1002/9781444347166.ch2. [CrossRef] [Google Scholar]
  • Gerbault M, Schneider J, Reverso-Peila A, Corsini M. 2018. Crustal exhumation during ongoing compression in the Variscan Maures–Tanneron Massif, France – Geological and thermo- mechanical aspects. Tectonophysics 746: 439–458. [CrossRef] [Google Scholar]
  • Gerya TV, Stöckhert B. 2005. Two-dimensional numerical modelling of tectonic and metamorphic histories at active convergent margins. Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-005-0035-9. [Google Scholar]
  • Giacomini F, Bomparola RM, Ghezzo C. 2005. Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: constraints for the Palaeozoic evolution of Southern Europe. Lithos 82: 221–248. [CrossRef] [Google Scholar]
  • Giacomini F, Dallai L, Carminati E, Tiepolo M, Ghezzo C. 2008. Exhumation of a Variscan orogenic complex: insights into the composite granulitic-amphibolitic metamorphic basement of south-east Corsica (France). J Metamorph Geol 26: 403–436. [CrossRef] [Google Scholar]
  • Gilotti JA. 2013. The realm of ultrahigh-pressure metamorphism. Elements 9: 255–260. https://doi.org/10.2113/gselements.9.4.255. [CrossRef] [Google Scholar]
  • Gosso G, Lardeaux JM, Zanoni D, Volante S, Corsini M, Bersezio R, et al. 2019. Mapping the progressive geologic history at the junction of the Alpine mountain belt and the western Mediterranean ocean. Ofioliti 44: 97–110. [Google Scholar]
  • Green EC, Holland TJB, Powell R. 2007. An order- disorder model for omphacitic pyroxenes in the system jadeite- diopside hedenbergite-acmite, with applications to eclogitic rocks. Am Mineral 92: 1181–1189. [CrossRef] [Google Scholar]
  • Hacker B. 2006. Pressures and temperatures of ultrahighpressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48: 1053–1066. [CrossRef] [Google Scholar]
  • Hacker B, Gerya TV, Gilotti JA. 2013. Formation and Exhumation of Ultrahigh-Pressure Terranes. Elements 9: 289–293. https://doi.org/10.2113/gselements.9.4.289. [CrossRef] [Google Scholar]
  • Haüy RJ. 1822. Traité de minéralogie, 2e éd., revue, corrigée et considérablement augmentée par l’auteur. Paris: Bachelier et Huzard, 4 vol. in−8° + atlas [t. II, p. 456; t. IV, p. 548]. [Google Scholar]
  • Hawthorne FC, Oberti R. 2012. Nomenclature of the amphibole supergroup. Am Mineral 97(11–12): 2031–2048. [CrossRef] [Google Scholar]
  • Hofmann AW, Jochum KP, Seufert WWM. 1986. Nb and Pb in oceanic basalts: new constrains on mantle evolution. Earth Planet Sci Lett 80: 299–313. [CrossRef] [Google Scholar]
  • Hofmann AW. 2003. Sampling mantle heterogeneity through oceanic basalts isotopes and trace elements. In: Carlson RW, ed. The Mantle and Core. Treatise on Geochemistry 2. New York: Elsevier, pp. 61–101. [Google Scholar]
  • Holland TJB, Powell R. 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145: 492–501. [CrossRef] [Google Scholar]
  • Holland TJB, Powell R. 2004. An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16: 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x. [CrossRef] [Google Scholar]
  • Hoskin PW, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53: 27–62. [CrossRef] [Google Scholar]
  • Innocent C, Michard A, Guerrot C, Hamelin B. 2003. U-Pb zircon age of 548 Ma for the leptynites (high-grade felsic rocks) of the central part of the Maures Massif. Geodynamic significance of the so-called leptyno-amphibolitic complexes of the Variscan belt of western Europe. Bulletin de la Société Géologique de France 174: 585–594. [CrossRef] [Google Scholar]
  • Irvine TNJ, Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci 8: 523–548. [CrossRef] [Google Scholar]
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211: 47–69. [CrossRef] [Google Scholar]
  • Joanny V, Lardeaux JM, Trolliard G, Boudeulle M. 1989. La transition omphacite = diopside + plagioclase dans les éclogites du Rouergue (Massif central français): un exemple de précipitation discontinue. C R Acad Sci Paris 309: 1929–1930. [Google Scholar]
  • Joanny V, van Roermund H, Lardeaux JM. 1991. The clinopyroxene/ plagioclase symplectite in retrograde eclogites: a potential geo- thermometer. Geol Rundsch 80: 303–320. [CrossRef] [Google Scholar]
  • Jouffray F, Spalla MI, Lardeaux JM, Filippi M, Rebay G, Corsini M, et al. 2020. Variscan eclogites from the Argentera-Mercantour Massif (External Crystalline Massifs, SW Alps): a dismembered cryptic suture zone. Int J Earth Sci 109: 1273–1294. https://doi.org/10.1007/s00531-020-01848-2. [CrossRef] [Google Scholar]
  • Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B. 2015. Zircons Th/U ratios in magmatic environs. Lithos 212–215: 397–414. https://doi.org/10.1016/j.lithos.2014.11.021. [CrossRef] [Google Scholar]
  • Klapova H, Konopasek J, Schulmann K. 1998. Eclogites from the Czech part of the Erzgebirge: multi-stage metamorphic and structural evolution. J Geol Soc Lond 155: 567–583. [CrossRef] [Google Scholar]
  • Kossmat F. 1927. Gliederung des varistischen Gebirgsbaus. Abh Sächs Geol LA 1: 1–39 [Google Scholar]
  • Lanari P, Engi M. 2017. Local bulk composition effects on metamorphic mineral assemblages. Rev Mineral Geoch 83(1): 55–102. [CrossRef] [Google Scholar]
  • Lardeaux JM, Ménot RP, Orsini JB, Rossi P, Naud G, Libourel G. 1994. Corsica and Sardinia in the Variscan chain. In: Keppie JD., ed. Pre-Mesozoic geology in France and related areas. Berlin: Springer, pp. 467–479. [CrossRef] [Google Scholar]
  • Lardeaux JM. 2014. Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts. Part II: Variscan metamorphism in the French Massif Central. A review. Bull Soc géol Fr 185: 281–310. [CrossRef] [Google Scholar]
  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, et al. 2014. The Moldanubian Zone in the French Massif Central, Vosges/ Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: extent Timescale and the Formation of the European Crust. J Geol Soc Lond Spec Publ 405: 7–44. [CrossRef] [Google Scholar]
  • Laverne C, Bronner G, Bellot JP. 1997. Les ultrabasites du massif hercynien des Maures (Var), témoins d’une zone avant-arc ? Evidences pétrographiques et minéralogiques. C R Acad Sci Paris IIA Earth Planet Sci 325(10): 765–771. [CrossRef] [Google Scholar]
  • Le Bas M, Maitre RL, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745–750. [CrossRef] [Google Scholar]
  • Leake BE, Woolley AR, Birch WD, Birch WD, Gilbert MC, Grice JD, et al. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Am Mineral 82: 1019–1037. [Google Scholar]
  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, et al. 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur J Miner 16: 191–196. [Google Scholar]
  • Li XH, Faure M, Lin W. 2014. From crustal anatexis to mantle melting in the Variscan orogen of Corsica (France): SIMS U-Pb zircon age constraints. Tectonophysics 634: 19–30. [CrossRef] [Google Scholar]
  • Linnemann U, Gerded A, Drost K, Buschmann B. 2007. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G, eds. The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Paper 423: 61–96. https://doi.org/10.1130/2007.2423(03). [Google Scholar]
  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461: 21–43. [CrossRef] [Google Scholar]
  • Linnemann U, Gerdes A, Hofmann M, Marko L. 2014. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244: 236–278. https://doi.org/10.1016/j.precamres.2013.08.007. [CrossRef] [Google Scholar]
  • Loi M. 2003. Evoluzione metamorfica e caratterizzazione geochimica delle rocce eclogitiche della Sardegna Nord-Orientale. PhD thesis. Università di Cagliari, pp. 1–290. [Google Scholar]
  • Lotout C, Poujol M, Pitra P, Anczkiewicz R, Van Den Driessche J. 2020. From burial to exhumation: emplacement and metamorphism of Mafic Eclogitic Terranes constrained through multimethod petrochronology, case study from the Lévézou Massif (French Massif Central, Variscan Belt). J Petrol. https://doi.org/10.1093/petrology/egaa046. [Google Scholar]
  • Ludwig K. 2011. User’s manual for Isoplot 4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, USA concentrations: Loess and the upper continental crust. Geochem Geophys Geosyst 2. [Google Scholar]
  • Margalef A, Castiñeiras P, Casas JM, Navidad M, Montserrat L, Linneman U, et al. 2016. Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance. Tectonophysics 681: 124–134. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Arena R, Abat J, Sánchez Martínez S, Díaz García F, Fernández Suárez J, et al. 2009. A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. C R Geosci 341: 114–126. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Collett S, Schulmann K, Aleksandrowski P, Mazur S. 2020. Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt. Int J Earth Sci 109: 1105–1131. [CrossRef] [Google Scholar]
  • Martínez Catalán JR, Schulmann K, Ghienne JF. 2021. The Mid-Variscan Allochthon: keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci Rev 220: 103700. https://doi.org/10.1016/j.earscirev.2021.103700. [CrossRef] [Google Scholar]
  • Massonne HJ. 2013. Constructing the pressure-temperature path of ultrahigh-pressure rocks. Elements 9: 267–272. https://doi.org/10.2113/gselements.9.4.267. [CrossRef] [Google Scholar]
  • Massonne HJ, Cruciani G, Franceschelli M, Musumeci G. 2018. Anticlockwise pressure-temperature paths record Variscan upper-plate exhumation: example from micaschists of the Porto Vecchio region, Corsica. J Metamorph Geol 36: 55–77. [CrossRef] [Google Scholar]
  • Matte P. 1991. Accretionary history and crustal evolution of the Variscan Belt in western Europe. Tectonophysics 196: 309–337. [CrossRef] [Google Scholar]
  • Matte P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13: 122–128. [CrossRef] [Google Scholar]
  • McKenzie D, O’Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021–1091. [CrossRef] [Google Scholar]
  • McKerrow WS, Cocks LRM. 1995. The use of biogeography in the terrane assembly of the Variscan belt of Europe. Studia Geophysica Geodaetica 39: 269–275. [CrossRef] [Google Scholar]
  • Medaris LG, Jelinek E, Misar Z. 1995. Czech eclogites: terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. Eur J Miner 7: 7–28. [CrossRef] [Google Scholar]
  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mudler JA, Blades ML, et al. 2021. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth Sci Rev 214: 103477. https://doi.org/10.1016/j.earscirev.2020.103477. [CrossRef] [Google Scholar]
  • Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56: 207–218. [CrossRef] [Google Scholar]
  • Miyashiro A. 1961. Evolution of metamorphic belts. J Petrol 2: 277–311. [CrossRef] [Google Scholar]
  • Morillon AC, Fraud G, Sosson M, Ruffet G, Crevola G, Lerouge G. 2000. Diachronous cooling on both side of a major strike-slip fault in the Variscan Maures massif (SE France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321: 103–126. [CrossRef] [Google Scholar]
  • Morimoto N. 1988. Nomenclature of pyroxenes. Mineral Petrol 39: 55–76. [CrossRef] [Google Scholar]
  • Murphy JB, Gutierrez Alonso G, Nance RD, Fernández Suárez J, Keppie JD, Quesada C, et al. 2006. Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34(5): 325–328. https://doi.org/10.1130/G22068.1. [CrossRef] [Google Scholar]
  • Nance RD, Murphy JB. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neo- proterozoic Avalonian-Cadomian belt. Geology 22: 617–620. [CrossRef] [Google Scholar]
  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2010. Evolution of the Rheic Ocean. Gondw Res 17: 194–222. https://doi.org/10.1016/j.gr.2009.08.001. [CrossRef] [Google Scholar]
  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, et al. 2012. A brief history of the Rheic Ocean. Geoscience Frontiers 3(2): 125–135. https://doi.org/10.1016/j.gsf.2011.11.008. [CrossRef] [Google Scholar]
  • O’Brien P. 1997. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: a record of their thermal history during exhumation. Lithos 41: 119–133. [CrossRef] [Google Scholar]
  • O’Brien P. 2000. The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D, eds. Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179(1): 369–386. https://doi.org/10.1144/GSL.SP2000.179.01.22. [CrossRef] [Google Scholar]
  • Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y. 2015. Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bull Soc géol Fr 186: 145–169. https://doi.org/10.2113/gssgfbull.186.2-3.145. [CrossRef] [Google Scholar]
  • Palagi P, Laporte D, Lardeaux JM, Menot RP, Orsini, JB. 1985. Identification d’un complexe leptyno-amphibolique au sein des « gneiss de Belgodère » (Corse occidentale). C R Acad Sci Paris 301(2): 1047–1052. [Google Scholar]
  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3). [Google Scholar]
  • Pattison DRM. 1991. Infiltration-driven anatexis in granulite facies metagabbro, Grenville Province, Ontario, Canada. J Metamorph Geol 9: 315–332. [CrossRef] [Google Scholar]
  • Pearce JA. 1996. A user’s guide to basalt discrimination diagrams. In: Wyman DA, ed. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. , Newfoundland: Geological Association of Canada, Short Course Notes, 12, pp. 79–113. [Google Scholar]
  • Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14–48. [CrossRef] [Google Scholar]
  • Philpotts JA, Schnetlzer CC. 1968. Europium anomalies and the genesis of basalt. Chem Geol 3: 5–13. [CrossRef] [Google Scholar]
  • Piboule M, Briand B. 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chem Geol 50: 189–199. [CrossRef] [Google Scholar]
  • Pin C. 1990. Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227. [CrossRef] [Google Scholar]
  • Pitra P, Poujol M, Van Den Driessche J, Bretagne E, Lotout C, Cogné N. 2022. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J Metamorph Geol 40: 39–65. https://doi.org/10.1111/jmg.12609. [CrossRef] [Google Scholar]
  • Rebay G, Powell R, Diener JFA. 2010. Calculated phase equilibria for a MORB composition in a P–T range, 450–650 °C and 18–28 kbar: the stability of eclogite. J Metamorph Geol 28: 635–645. https://doi.org/10.1111/j.1525-1314.2010.00882.x. [CrossRef] [Google Scholar]
  • Regorda A, Lardeaux JM, Roda M, Marotta AM, Spalla I. 2020. How many subductions in the Variscan orogeny? Insights form numerical models. Geoscience Frontiers 11(3): 1025–1052. [CrossRef] [Google Scholar]
  • Regorda A, Spalla MI, Roda M, Lardeaux JM, Marotta AM. 2021. Metamorphic facies and deformation fabrics diagnostic of subduction: Insights from 2D numerical models. Geochem Geophys Geosyst 22: e2021GC009899. https://doi.org/10.1029/2021GC009899. [CrossRef] [Google Scholar]
  • Roda M, Zucali M, Regorda A, Spalla MI. 2020. Formation and evolution of a subduction-related melange: the example of the Rocca Canavese Thrust Sheets (Western Alps). Bull Geol Soc Am 132(3–4): 884–896. https://doi.org/10.1130/B35213.1. [CrossRef] [Google Scholar]
  • Rolland Y, Corsini M, Demoux A. 2009. Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along the transpressional margin. Bull Soc géol Fr 180: 217–230. [CrossRef] [Google Scholar]
  • Rossi P, Oggiano G, Cocherie A. 2009. A restored section of the “southern Variscan realm” across the Corsica-Sardinia microcontinent. C R Geosci 341: 224–238. [CrossRef] [Google Scholar]
  • Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U ± Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D, eds. Cathodoluminescence in geosciences. Berlin Heidelberg, New York: Springer, pp. 373–400. [CrossRef] [Google Scholar]
  • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184: 123–138. [CrossRef] [Google Scholar]
  • Rudnick R, Fountain DM. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33: 267–309. [CrossRef] [Google Scholar]
  • Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geoscience Frontiers 6: 481–501. [CrossRef] [Google Scholar]
  • Santallier D, Briand B, Ménot RP, Piboule M. 1988. Les complexes leptyno-amphiboliques (CLA) : revue critique et suggestions pour un meilleur emploi de ce terme. Bull Soc géol Fr 8, IV(1): 3–12. [CrossRef] [Google Scholar]
  • Schmädicke E, Will TM, Ling X, Li XH, Li QL. 2018. Rare peak and ubiquitous post-peak zircon in eclogite: constraints for the timing of UHP and HP metamorphism in Erzgebirge, Germany. Lithos 322: 250–267. [CrossRef] [Google Scholar]
  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux JM. 2014. Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif (SE France) In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan Orogeny: extent, timescale and the formation of the European Crust. Geol Soc Lond Spec Publ 405: 313–331. [CrossRef] [Google Scholar]
  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, et al. 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266–286. [CrossRef] [Google Scholar]
  • Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB. 2014. Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42: 275–278. [CrossRef] [Google Scholar]
  • Scodina M, Cruciani G, Franceschelli M. 2021. Metamorphic evolution and P–T path of the Posada Valley amphibolites: new insights on the Variscan high pressure metamorphism in NE Sardinia, Italy. C R Geosci 353(1): 227–246. https://doi.org/10.5802/crgeos.65. [Google Scholar]
  • Scotese CR, Boucot AJ, McKerrow WS. 1999. Gondwanan paleogeography and paleoclimatology. J Afr Earth Sci 28: 99–114. [CrossRef] [Google Scholar]
  • Seyler M. 1975. Pétrologie et lithostratigraphie des formations cristallophylliennes dans la chaîne de la Sauvette (Maures, Var, France). PhD Thesis. Université de Nice. [Google Scholar]
  • Seyler M. 1986. Magmatologie des séries volcaniques métamorphiques. L’exemple des métavolcanites cambro-ordoviciennes, en particulier alcalines, du socle provençal (France). Unpublished thesis. France: Université Lyon 1. [Google Scholar]
  • Seyler M, Boucarut M. 1978. Données nouvelles sur la lithostratigraphie du massif des Maures le long d’une transversale Réal Martin-Grimaud. Bulletin du Bureau de recherches géologiques et minières 1: 3–18. [Google Scholar]
  • Seyler M, Crevola G. 1982. Mise au point sur la structure et l’évolution géodynamique de la partie centrale du Massif des Maures. C R Acad Sci Paris 295: 243–246. [Google Scholar]
  • Shervais JW. 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59: 101–118. [CrossRef] [Google Scholar]
  • Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle JM, et al. 2020. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France). Int J Earth Sci 109: 2261–2285. https://doi.org/10.1007/s00531-020-01898-6. [CrossRef] [Google Scholar]
  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, et al. 2008. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005. [CrossRef] [Google Scholar]
  • Soejono I, Žáčková E, Janoušek V, Machek M, Košler J. 2010. Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. J Geol Soc Lond 167: 1113–1130. https://doi.org/10.1144/0016-76492009-180. [CrossRef] [Google Scholar]
  • Spalla MI, Lardeaux JM, Dal Piaz GV, Gosso G, Messiga B. 1996. Tectonic significance of Alpine eclogites. J Geodyn 21(3): 257–285. [CrossRef] [Google Scholar]
  • Spalla MI, Zanoni D, Marotta AM, Rebay G, Roda M, Zucalli M, et al. 2014. The transition from Variscan collision to continental break-up in the Alps: insights from the comparison between natural data and numerical model predictions. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G, eds. The Variscan orogeny: extent, timescale and the formation of the European Crust. Geol Soc Lond Spec Publ 405: 363–400. [CrossRef] [Google Scholar]
  • Spear FS. 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am Monogr Ser 1: 789. [Google Scholar]
  • Stampfli G, Borel G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1): 17–33. [CrossRef] [Google Scholar]
  • Stephan T, Kroner U, Romer RL. 2019. The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geol Mag 156: 281–307. [CrossRef] [Google Scholar]
  • Štípská P, Pitra P, Powell R. 2006. Separate or shared metamorphic histories of eclogites and surrounding rocks? An example from the Bohemian Massif. J Metamorph Geol 24: 219–240. [CrossRef] [Google Scholar]
  • Štípská P, Powell R, Racek M, Lexa O. 2014. Intermediate granulite produced by transformation of eclogite at a felsic granulite contact, in Blansky les, Bohemian Massif. J Metamorph Geol 32: 347–370. [CrossRef] [Google Scholar]
  • Štípská P, Powell R, Hacker BR, Holder R, Kylander-Clark ARC. 2016. Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J Metamorph Geol 34: 551–572. https://doi.org/10.1111/jmg.12193. [CrossRef] [Google Scholar]
  • Suess FE. 1926. Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Berlin: Verlag von Gebrüder Borntraeger. [Google Scholar]
  • Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ, eds. Magmatism in the Ocean Basins. Geol Soc Lond Spec Publ 42: 313–345. [CrossRef] [Google Scholar]
  • Tabaud AS, Štípská P, Mazur S, Schulmann K, Míková J, Wong J, et al. 2021. Evolution of a Cambro-Ordovician active margin in northern Gondwana: Geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondw Res 90: 1–26. https://doi.org/10.1016/j.gr.2020.10.011. [CrossRef] [Google Scholar]
  • Tabaud AS, Lardeaux JM, Corsini M. 2022. A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin. Int J Earth Sci. https://doi.org//10.1007/s00531-022-02277-z. [Google Scholar]
  • Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A. 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in Quartz. Contrib Mineral Petrol 160: 743–759. [CrossRef] [Google Scholar]
  • Thompson R, Morrison MA, Dickin A, Hendry GL. 1983. Continental flood basalts arachnids rule OK? In: Hawkesworth CJ, Norry MJ, eds. Continental Basalts and Mantle Xenoliths. India: Shiva Publications, pp. 158–185. [Google Scholar]
  • Tomkins HS, Powell R, Ellis DJ. 2007. The pressure dependance of the zirconium-in-rutile thermometer. J Metamorph Geol 25: 703–713. [CrossRef] [Google Scholar]
  • Torsvik TH, Cocks LRM. 2004. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J Metamorph Geol 161(4): 555–572. [Google Scholar]
  • Torsvik TH, Cocks LRM. 2011. The Palaeozoic palaeogeography of central Gondwana. Geol Soc Lond Spec Publ 357: 137–166. [CrossRef] [Google Scholar]
  • Troitzsch U, Ellis DJ. 2004. High-PT study of solid solutions in the system ZrO2-TiO2: the stability of srilankite. Eur J Miner 16: 577–584. [CrossRef] [Google Scholar]
  • Utzeri D. 2007. La Valle del Posada (Sardegna NE): Transizione medio- alto grado metamorfico e caratterizzazione delle metabasiti. PhD thesis. Università di Cagliari, pp. 1–210. [Google Scholar]
  • Vanardois J, Roger F, Trap P, Goncalves P, Lanari P, Paquette JL, et al. 2022. Exhumation of deep continental crust in a transpressive regime: the example of Variscan eclogites from the Aiguilles-Rouges Massif (Western Alps). J Metamorph Geol. https://doi.org/10.1002/jmg.12659. [Google Scholar]
  • Vermeesch P. 2012. On the visualisation of detrital age distributions. Chem Geol 312: 190–194. [CrossRef] [Google Scholar]
  • Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151: 413–433. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB, Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system: K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18: 497–511. [CrossRef] [Google Scholar]
  • White RW, Powell R, Clarke GL. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20: 41–55. [CrossRef] [Google Scholar]
  • White RW, Powell R, Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25: 511–527. [CrossRef] [Google Scholar]
  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19(1): 1–23. https://doi.org/10.1111/j.1751-908X1995.tb00147.x. [CrossRef] [Google Scholar]
  • Wood DA. 1980. The application of a TH-HF-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth Planet Sci Lett 50: 11–30. [CrossRef] [Google Scholar]
  • Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148(4): 471–488. [CrossRef] [Google Scholar]
  • Zhao L, Zhai M, Santosh M, Zhou X. 2017. Early Mesozoic retrograded eclogite and mafic granulite from the Badu Complex of the Cathaysia Block, South China: petrology and tectonic implications. Gondw Res 42: 84–103. https://doi.org/10.1016/j.gr.2016.10.002. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.