Open Access
Numéro |
BSGF - Earth Sci. Bull.
Volume 195, 2024
Special Issue Messinian Crisis
|
|
---|---|---|
Numéro d'article | 16 | |
Nombre de pages | 19 | |
DOI | https://doi.org/10.1051/bsgf/2024007 | |
Publié en ligne | 5 septembre 2024 |
- Afilhado A, Moulin M, Aslanian D, Schnürle P, Klingelhoefer F, Nouzé, H., Rabineau M et al. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)-II. Sardinia’s margin. Bull. Soc. Géolog France 186: 331–351. [CrossRef] [Google Scholar]
- Auzende JM, Bonnin J, Olivet JL 1973. The origin of the western Mediterraneanbasin. J Geolog Soc 129:607–620. [Google Scholar]
- Bache F, Olivet JL, Gorini C, Rabineau M, Baztan J, Aslanian D, Suc JP. 2009. Messinian erosional and salinity crises: view from the Provence Basin (Gulf of Lions, Western Mediterranean). Earth Planet Sci Lett 286: 139–157. [CrossRef] [Google Scholar]
- Bache F, Olivet JL, Gorini C, Aslanian D, Labails C, Rabineau M. 2010. Evolution of rifted continental margins: the case of the Gulf of Lions (Western Mediterranean Basin). Earth Planet Sci Lett 292: 345–356. [CrossRef] [Google Scholar]
- Bache F, Gargani J, Suc JP, Gorini C, Rabineau M, Popescu SM, Leroux E, Do Couto D, Jouannic G, Rubino J-L., Olivet J-L.,Clauzon G, Dos Reis AT, Aslanian D. 2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Mar Petrol Geol 66: 262–277. [CrossRef] [Google Scholar]
- Badhani S, Cattaneo A, Dennielou B, Leroux E, Colin F, Thomas Y, Jouet G, Rabineau M, Droz L. 2020. Morphology of retrogressive failures in the Eastern Rhône interfluve during the last glacial maximum (Gulf of Lions, Western Mediterranean). Geomorphology 351: 106894. [CrossRef] [Google Scholar]
- Bassetti MA, Berne S, Jouet G, Taviani M, Dennielou B, Flores JA, Gaillot A, Gelfort R, Lafuerza S, Sultan N. 2008. The 100‐ka and rapid sea level changes recorded by prograding shelf sand bodies in the Gulf of Lions (western Mediterranean Sea). Geochem Geophys Geosyst 9(11). [CrossRef] [Google Scholar]
- Benson RH, Rakic‐El Bied K, Bonaduce G. 1991. An important current reversal (influx) in the Rifian Corridor (Morocco) at the Tortonian‐Messinian boundary: The end of Tethys Ocean. Paleoceanography 6: 165–192. [CrossRef] [Google Scholar]
- Bellucci M. 2021. Relationship between crustal segmentation, nature, thermicity and salt tectonics in the Western Mediterranean Sea (Doctoral dissertation, Université de Bretagne occidentale-Brest; Università degli studi (Trieste, Italie)). [Google Scholar]
- Bellucci M, Aslanian D, Moulin M, Rabineau M, Leroux E, Pellen R, Poort J, Del Ben A, Gorini C, Camerlenghi A. 2021a. Salt morphologies and crustal segmentation relationship: New insights from the Western Mediterranean Sea. Earth-Sci Rev 103818. [CrossRef] [Google Scholar]
- Bellucci M, Pellen R, Leroux E, Bache F, Garcia M, Do Couto D, Raad F, Blondel S, Rabineau M, Gorini C, Moulin M, Maillard A, Lofi J, Del Ben A, Camerlenghi A, Poort J, Aslanian D. 2021b. A comprehensive and updated compilation of the seismic stratigraphy markers in the Western Mediterranean Sea. SEANOE. https://doi.org/10.17882/80128. [Google Scholar]
- Bellucci M, Poort J, Lucazeau F, Rolandone F, Do Couto D. et al. (2024). New heat flow data on the South Balearic margin: Evidence of regional fluid circulation system. Tectonophysics, 870, 230155. [CrossRef] [Google Scholar]
- Blondel S, Bellucci M, Evans S, Del Ben A, Camerlenghi A. 2022. Contractional salt deformation in a recently inverted basin: Miocene to current salt deformation within the central Algerian basin. Basin Research. [Google Scholar]
- Brun JP, Fort X. 2011. Salt tectonics at passive margins: geology versus models. Mar Petrol Geol 28: 1123–1145. [CrossRef] [Google Scholar]
- Burrus J, Foucher JP. 1986. Contribution to the thermal regime of the Provençal Basin based on FLUMED heat flow surveys and previous investigations. Tectonophysics 128: 303–334. [CrossRef] [Google Scholar]
- Carter NL, Horseman ST, Russell JE, Handin J. 1993. Rheology of rocksalt. J Struct Geol 15: 1257–1271. [CrossRef] [Google Scholar]
- Christeleit EC, Brandon MT, Zhuang G. 2015. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. Earth Planet Sci Lett 427: 226–235. [CrossRef] [Google Scholar]
- CIESM. 2008. The Messinian salinity crisis from mega-deposits to microbiology. In: Briand, F. (Ed.), A consensus report, in 33‘eme CIESM Workshop Monographs, 33. CIESM 16, bd de Suisse, MC-98000, Monaco, pp. 1–168. [Google Scholar]
- Clauzon G. 1982. Le canyon messinien du Rhône; une preuve decive du“ desiccated deep-basin model ». Bull Soc Géolog France 7: 597–610. [CrossRef] [Google Scholar]
- Clauzon G, Suc JP, Gautier F, Berger A, Loutre MF. 1996. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24: 363–366. [CrossRef] [Google Scholar]
- Cobbold PR, Szatmari P. 1991. Radial gravitational gliding on passive margins. Tectonophysics 188: 249–289. [CrossRef] [Google Scholar]
- Dal Cin M, Del Ben A, Mocnik A, Accaino F, Geletti R, Wardell N, Zgur F, Camerlenghi A. 2016. Seismic imaging of Late Miocene (Messinian) evaporites from Western Mediterranean back-arc basins. Petrol Geosci 22: 297–308. [CrossRef] [Google Scholar]
- Dale MS, Marín‐Moreno H, Falcon‐Suarez IH, Grattoni C, Bull JM, McNeill LC. 2021. The Messinian Salinity Crisis as a trigger for high pore pressure development in the Western Mediterranean. Basin Res 33: 2202–2228. [CrossRef] [Google Scholar]
- Demercian S, Szatmari P, Cobbold PR. 1993. Style and pattern of salt diapirs due to thin skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics 228: 393–433. [Google Scholar]
- Dooley TP, Hudec MR, Carruthers D, Jackson MP, Luo G. 2017. The effects of base-salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation 5: SD1–SD23. [CrossRef] [Google Scholar]
- Dos Reis AT. 2001. La Tectonique Salifère et son Influence sur l’Architecture Sédimentaire Quaternaire de la Marge du Golfe du Lion- Méditérranée Occidentale (Doctoral dissertation). Université de Bretagne Occidentale. [Google Scholar]
- Dos Reis AT, Gorini C, Mauffret A. 2005. Implications of salt-sediment interactions on the architecture of the Gulf of Lions deep-water sedimentary systems—western Mediterranean Sea. Mar Petrol Geol 22: 713–746. [CrossRef] [Google Scholar]
- Dos Reis AT, Gorini C, Weibull W, Perovano R, Mepen M, Ferreira É. 2008. Radial gravitacional gliding indicated by subsalt relief and salt-related structures: the example of the gulf of Lions, western Mediterranean. Rev Brasil Geofís 26: 347–365. [Google Scholar]
- Droz L. 2003. PROGRES cruise, RV Le Suroît, https://doi.org/10.17600/3020080 [Google Scholar]
- Droz L, Jégou I, Gillet H, Dennielou B, Bez M, Canals M, Amblas D, Lastras G, Rabineau M. 2020. On the termination of deep-sea fan channels: Examples from the Rhône Fan (Gulf of Lion, Western Mediterranean Sea). Geomorphology 369: 107368. [CrossRef] [Google Scholar]
- Duffy OB, Hudec M, Peel F, Apps G, Bump A, Moscardelli L, Dooley T, Bhattacharya S, Wisian K, Shuster M. 2022. The role of salt tectonics in the energy transition: An overview and future challenges. [Google Scholar]
- Duval B, Cramez C, Jackson MPA. 1992. Raft tectonics in the Kwanza basin, Angola. Mar Petrol Geol 9: 389–404. [CrossRef] [Google Scholar]
- Fisher AT, Becker K. 2000. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403: 71–74. [CrossRef] [Google Scholar]
- Gattacceca J, Deino A, Rizzo R, Jones DS, Henry B, Beaudoin B, Vadeboin F. 2007. Miocene rotation of Sardinia: new paleomagnetic and geochronological constraints and geodynamic implications. Earth Planet Sci Lett 258: 359–377. [CrossRef] [Google Scholar]
- Gaullier V. 1993. Diapirisme salifère et dynamique sédimentaire dans le bassin Liguro-Provençal. Données sismiques et modèles analogiques: Thèse, Université de Paris, 327. [Google Scholar]
- Gaullier V, Loncke L, Vendeville B, Déverchère J, Droz L, Obone Zue Obane EM, Mascle J. 2008. Salt tectonics in the deep Mediterranean: indirect clues for understanding the Messinian Salinity Crisis. The Messinian salinity crisis from mega-deposits to microbiology-A consensus report, 91–96. [Google Scholar]
- Gaullier, V., Chanier, F., Lymer, G., Vendeville, B. C., Maillard, A., Thinon, I. et al. (2014). Salt tectonics and crustal tectonics along the Eastern Sardinian margin, Western Tyrrhenian: New insights from the “METYSS 1” cruise. Tectonophysics, 615, 69–84. [CrossRef] [Google Scholar]
- Gaullier V, Vendeville B, Lofi J, Droz L, Sage F. 2018. Diachronous salt tectonics along the Gulf of Lions margin, Western Mediterranean. In EGU General Assembly Conference Abstracts (p. 17669). [Google Scholar]
- Gautier F, Clauzon G, Suc J-P., Cravatte J, Violanti D. 1994. Age et durée de la crise de salinité messinienne. Comptes-Rendus de l’Académie des Sciences de Paris (2) 318: 1103–1109. [Google Scholar]
- Geletti R, Zgur F, Del Ben A, Buriola F, Fais S, Fedi M, Forte E, Mocnik A, Paoletti V, Pipan M, Ramella R, Romeo R, Romi A. 2014. The Messinian Salinity Crisis: new seismic evidence in the West-Sardinian Margin and Eastern Sardo-Provençal Basin (West Mediterranean Sea). Mar Geol 351: 76–90. [CrossRef] [Google Scholar]
- Gorini C. 1993. Géodynamique d’une marge passive: le Golfe du Lion (Méditerranée occidentale) (Doctoral dissertation). [Google Scholar]
- Gorini C, Montadert L, Rabineau M. 2015. New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean. Mar Petrol Geol 66: 278–294. [CrossRef] [Google Scholar]
- Granado P, Urgeles R, Sàbat F, Albert-Villanueva E, Roca E, Muñoz JA, Mazzucca N, Gambini R. 2016. Geodynamical framework and hydrocarbon plays of a salt giant: the NW Mediterranean Basin. Petroleum Geosci 22: 309–321. [CrossRef] [Google Scholar]
- Hsü KJ, Ryan WB, Cita MB. 1973. Late Miocene desiccation of the Mediterranean. Nature 242: 240–244. [CrossRef] [Google Scholar]
- Jackson MPA, Hudec MR. 2017. Salt Tectonics: Principles and Practice. Cambridge University Press. [Google Scholar]
- Ings S, Beaumont C, Gemmer L. 2004. Numerical modeling of salt tectonics on passive continental margins: preliminary assessment of the effects of sediment loading, buoyancy, margin tilt, and isostasy, in 24th Annual GCSSEPM Foundation, Bob F. Perkins Research Conference Proceedings (Vol. 36, p. 69). [Google Scholar]
- Le Cann C. 1987. Le diapirisme dans le bassin Liguro-Provençal (Méditerranée occidentale) (Doctoral dissertation, Université de Bretagne occidentale). [Google Scholar]
- Leroux E. 2012. Quantification des flux sédimentaires et de la subsidence du bassin Provençal (Doctoral dissertation, Université de Bretagne occidentale-Brest). [Google Scholar]
- Leroux E, Rabineau M, Aslanian D, Granjeon D, Droz L, Gorini C. 2014. Stratigraphic simulations of the shelf of the Gulf of Lions: testing subsidence rates and sea-level curves during the Pliocene and Pleistocene. Terra Nova 26: 230–238. [CrossRef] [Google Scholar]
- Leroux E, Aslanian D, Rabineau M, Moulin M, Granjeon D, Gorini C, Droz L. 2015a. Sedimentary markers in the Provençal basin (Western Mediterranean): a window into deep geodynamic processes. Terra Nova 27: 122–129. [CrossRef] [Google Scholar]
- Leroux E, Rabineau M, Aslanian D, Gorini C, Bache F, Moulin M, Pellen R, Granjeon D, Rubino JL. 2015b. Post-rift evolution of the Gulf of Lion margin tested by stratigraphic modelling. Bull Soc Géolog France 186: 291–308. [CrossRef] [Google Scholar]
- Leroux E, Rabineau M, Aslanian D, Gorini C, Molliex S, Bache F, Robin C, Droz L, Moulin M, Poort J, Rubino JL, Suc JP. 2017. High-resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonics. Basin Res 29: 305–339. [CrossRef] [Google Scholar]
- Leroux E, Aslanian D, Rabineau M, Gorini C, Rubino J-L., Poort J, Suc J-P., Bache F, Blanpied C, et al. 2019. Atlas of the stratigraphic markers in the western mediterranean with focus on the Messinian, Pliocene and Pleistocene of the Gulf of Lion. CGMW (Commision for the Geological Map of the World) editor,73p + CD. https://ccgm.org/fr/atlas/199-atlas-of-the-stratigraphic-markers-in-the-western-mediterranean-the-gulf-of-lion-9782917310380.html [Google Scholar]
- Letouzey, Colletta B, Vially RA, Chermette JC. 1995. Evolution of salt-related structures in compressional settings. [Google Scholar]
- Lofi J. 2002. La crise de salinité messinienne: conséquences directes et différées sur l’évolution sédimentaire de la marge du Golfe du Lion. Diss. Lille 1. www.theses.fr/2002LIL10034 [Google Scholar]
- Lofi J, Gorini C, Berné, S., Clauzon G, Dos Reis AT, Ryan WB, Steckler MS. 2005. Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Mar Geol 217: 1–30. [CrossRef] [Google Scholar]
- Lofi J, Déverchère J, Gaullier V, Gillet H, Gorini C, Guennoc P, Loncke L, Maillard A, Sage F, Thinon I. 2011. Seismic atlas of the “messinian salinity crisis” markers in the mediterranean and black seas. Commun Geol Map World Mem SoC Géol de France, Nouvelle Śer. 72. [Google Scholar]
- Lofi J. 2018. Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean Sea-Volume 2 (Vol. 181, pp. 1–72). Société Géologique de France. [Google Scholar]
- Maillard A, Gaullier V, Vendeville BC, Odonne F. 2003. Influence of differential compaction above basement steps on salt tectonics in the Ligurian-Provençal Basin, northwest Mediterranean. Mar Petrol Geol 20: 13–27. [CrossRef] [Google Scholar]
- Maillard A, Jolivet L, Lofi J, Thinon I, Couëffé R, Canva A, Dofal A. 2020. Transfer zones and associated volcanic province in the eastern Valencia Basin: Evidence for a hot rifted margin? Mar Petrol Geol 119: 104419. [CrossRef] [Google Scholar]
- Meilijson A, Hilgen F, Sepúlveda J, Steinberg J, Fairbank V, Flecker R, Waldmann N, Spaulding S, Bialik O, Garrett Boudinot F, Illner P, Makovsky Y. 2019. Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. Earth Sci Rev 194: 374–398. [CrossRef] [Google Scholar]
- Mello UT, Karner GD, Anderson RN. 1995. Role of salt in restraining the maturation of subsalt source rocks. Mar Petrol Geol 12: 697–716. [CrossRef] [Google Scholar]
- Mianaekere V, Adam J. 2020a. ‘Halo-kinematic’ sequence stratigraphic analysis adjacent to salt diapirs in the deepwater contractional province, Liguro-Provençal Basin, Western Mediterranean Sea. Mar Petrol Geol 115: 104258. [Google Scholar]
- Mianaekere V, Adam J. 2020b. ‘Halo-kinematic’ sequence-stratigraphic analysis of minibasins in the deepwater contractional province of the Liguro-Provençal basin, Western Mediterranean. Mar Petrol Geol 116: 104307. [CrossRef] [Google Scholar]
- Moulin M, Klingelhoefer F, Afilhado A, Aslanian D, Schnurle P, Nouzé, H., Rabineau M, Beslier MO, Feld A. 2015. Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)-I. Gulf of Lion’s margin. Bull. Soc. Géolog France 186: 309–330. [CrossRef] [Google Scholar]
- Obone-Zue-Obame EM, Gaullier V, Sage F, Maillard A, Lofi J, Vendeville B, Thinon I, Rehault JP. 2011. The sedimentary markers of the Messinian salinity crisis and their relation with salt tectonics on the Provençal margin (western Mediterranean): results from the “MAURESC” cruise. Bull Soc Géolog France 182: 181–196. [CrossRef] [Google Scholar]
- Olivet JL. 1996. La cinématique de la plaque ibérique. Bulletin des centres de recherches exploration-production Elf-Aquitaine 20: 131–195. [Google Scholar]
- Pascal GP, Mauffret A, Patriat P. 1993. The ocean-continent boundary in the Gulf of Lion from analysis of expanding spread profiles and gravity modelling. Geophys J Int 113: 701–726. [CrossRef] [Google Scholar]
- Pautot G, Le Cann C, Coutelle A, Mart Y. 1984. Morphology and extension of the evaporitic structures of the Liguro—Provençal Basin: New Sea-Beam data. Mar Geol 55: 387–409. [CrossRef] [Google Scholar]
- Pellen R, Aslanian D, Rabineau M, Suc JP, Gorini C, Leroux E, Blanpied C, Silenziario C, Popescu SM, Rubino JL. 2019. The Messinian Ebro River incision. Glob Planet Change 181: 102988. [CrossRef] [Google Scholar]
- Poort J, Lucazeau F, Le Gal V, Dal Cin M, Leroux E, Bouzid A, Rabineau M, Palomino D, Battani A, Akhmanov GG, Ferrante GM, Gafurova DR, Bachir, R. Si, Koptev A, Tremblin M, Bellucci M, Pellen R, Camerlenghi A, Migeon S, Alonso B, Ercilla G, Yelles-Chaouche AK, Khlystov OM, 2020. Heat flow in the Western Mediterranean: Thermal anomalies on the margins, the seafloor and the transfer zones. Mar Geol 419: 106064. [CrossRef] [Google Scholar]
- Rabineau M. 2001. Un modèle géométrique et stratigraphique des séquences de dépôts quaternaires sur la marge du Golfe du Lion: enregistrement des cycles climatiques de 100 000 ans (Doctoral dissertation, Université de Rennes1). [Google Scholar]
- Rabineau M, Berné S, Aslanian D, Olivet J-L, Joseph P, Guillocheau F, Bourillet J-F, Ledrezen E, Granjeon D. 2005 : Sedimentary sequences in the Gulf of Lions : a record of 100,000 years climatic cycles, Marine and Petroleum Geology, 22, p. 775-804). [Google Scholar]
- Rabineau M, Berné S, Olivet JL, Aslanian D, Guillocheau F, Joseph P. 2006. Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 yr) . JT Earth Planet Sci Lett 252: 119–137. [CrossRef] [Google Scholar]
- Rabineau M, Leroux E, Aslanian D, Bache F, Gorini C, Moulin M, Molliex S, Droz L, dos Reis AT, Rubino JL, Guillocheau F, Olivet JL. 2014. Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth Planet Sci Lett 388: 353–366. [CrossRef] [Google Scholar]
- Réhault JP, Boillot G, Mauffret A. 1984. The western Mediterranean basin geological evolution. Mar Geol 55: 447–477. [CrossRef] [Google Scholar]
- Rowan MG, Giles KA. 2021. Passive versus active salt diapirism. AAPG Bull 105: 53–63. [CrossRef] [Google Scholar]
- Sierro FJ, Andersen N, Bassetti MA, Berné S., Canals M, Curtis JH, Dennielou B, Flore JA, Frigola J, Gonzales-Mora B, Grimalt JO, Hodell DA, Jouet G, Pérez-Folgado M, Schneider R. 2009. Phase relationship between sea level and abrupt climate change. Pleistocene Sci Rev 28: 2867–2881. [Google Scholar]
- Soto, J. I., Déverchère, J., Hudec, M. R., Medaouri, M., Badji, R., Gaullier, V., & Leffondré, P. (2022). Crustal structures and salt tectonics on the margins of the western Algerian Basin (Mediterranean Region). Marine and Petroleum Geology, 144, 105820. [CrossRef] [Google Scholar]
- Suc J-P., Clauzon G, Bessedik M, Leroy S, Zheng Z, Drivaliari A, Roiron P, Ambert P, Martinell J, Domenech R, Matias I, Julia R, Anglada R. 1992. Neogene and Lower Pleistocene in Southern France and Northeastern Spain. Mediterranean environments and climate. Cah Micropaleontol 7: 165–186. [Google Scholar]
- Vail PR, Mitchum RM, Todd RG, Widmier JM, Thompson S, Sangree JB, Bubb JN, Hatlelid WG. 1977. Seismic stratigraphy and global changes of sea-level. Seismic stratigraphy-applications to hydrocarbon exploration. Memoir 26. American Association of Petroleum Geologists, Tulsa. [Google Scholar]
- Vendeville BC. 2005. Salt tectonics driven by sediment progradation: Part I—Mechanics and kinematics. AAPG Bull 89: 1071–1079. [CrossRef] [Google Scholar]
- Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F. 2019. The Generic Mapping Tools. GMT Man Pages. Release 5.4. 5. Computer software manual. USA-2019 [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.