Open Access
Numéro
BSGF - Earth Sci. Bull.
Volume 195, 2024
Numéro d'article 20
Nombre de pages 18
DOI https://doi.org/10.1051/bsgf/2024018
Publié en ligne 11 octobre 2024
  • Abati J, Dunning GR, Arenas R, Dıaz Garcıa F, Gonzalez Cuadra P, Martınez Catalan J, et al. 1999. Early Ordovician orogenic event in Galicia (NW Spain): evidence from U-Pb ages in the uppermost unit of the Ordenes Complex. Earth Planet Sci Lett 165: 213–228. [CrossRef] [Google Scholar]
  • Ballèvre M, Marchand J, Godard G, Goujou J-C., Wyns R. 1994. Eo-Hercynian events in the Armorican Massif. In: Keppie JD, ed. Pre-Mesozoic geology in France and related areas. Berlin: Springer, pp. 183–194. [CrossRef] [Google Scholar]
  • Ballèvre M, Bosse V, Ducassou C, Pitra P. 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341: 174–201. [CrossRef] [Google Scholar]
  • Ballèvre M, Fourcade S, Capdevila R, Peucat J-J., Cocherie A, Fanning CM. 2012. Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21: 1019–1036. https://doi.org/10.1016/j.gr.2011.07.030. [CrossRef] [Google Scholar]
  • Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, et al. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. In Schulmann K, Martínez Catalán JR, Lardeaux JM, Janousěk V, Oggiano G eds. Geological Society of London Special Publication 405: 77–113. [CrossRef] [Google Scholar]
  • Benmammar A. 2021. Comment expliquer la dualité thermique des subductions pré-orogéniques ? : Exemple du métamorphisme de haute-pression dans le Massif central français. Unpublished PhD Thesis, Université Paul Sabatier de Toulouse. 212pp (available online). [Google Scholar]
  • Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier J-C, et al. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): age, tectonic setting and fluid-rock interactions. Lithos 118: 365–382. [CrossRef] [Google Scholar]
  • Bernard-Griffiths J, Cornichet J. 1985. Origin of eclogites from South Brittany, France: a Sm-Nd isotopic and REE study. Chem Geol 52: 185–201. [Google Scholar]
  • Bosse V, Féraud G, Ruffet G, Ballèvre M, Peucat J-J., de Jong K. 2000. Late Devonian subduction and early orogenic exhumation of eclogite-facies rocks from the Champtoceaux complex Variscan belt, France. Geol J 35: 297–325. [CrossRef] [Google Scholar]
  • Bosse V, Féraud G, Ballèvre M, Peucat J-J., Corsini M. 2005. Rb-Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem Geol 220: 21–45. [CrossRef] [Google Scholar]
  • Bosse V, Villa IM. 2019. Petrochronology and hygrochronology of tectono-metamorphic events. Gondwana Res 71: 76–90. [CrossRef] [Google Scholar]
  • Cenki-Tok B, Oliot E, Rubatto D, Berger A, Engi M, Janots E, et al. 2011. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: mechanical and chemical behavior of allanite during mylonitization. Lithos 125: 40–50. https://doi.org/10.1016/j.lithos.2011.01.005. [CrossRef] [Google Scholar]
  • Cherniak DJ, Watson BE, Grove M, Harrison TM. 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68: 829–840. [CrossRef] [Google Scholar]
  • Cocherie A, Bé Mézème E, Legendre O, Fanning CM, Faure M, Rossi P. 2005. Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites, Amer Mineral 90: 607–618. [CrossRef] [Google Scholar]
  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, et al. 2013. Disturbance versus preservation of U-Th-Pb ages in monazite during fluid-rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165: 1051–1072. [CrossRef] [Google Scholar]
  • Didier A, Bosse V, Cherneva Z, Gautier P, Georgieva M, Paquette JL, et al. 2014. Syn-deformation fluid-assisted growth of monazite during renewed highgrade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381: 206–222. [CrossRef] [Google Scholar]
  • Galàn G, Marcos A. 1997. Geochemical evolution of high-pressure mafic granulites from the Bacariza formation (Cabo Ortegal complex, NW Spain): an example of a heterogeneous lower crust. Geologische Rundschau 86: 539–355. [CrossRef] [Google Scholar]
  • Gardés E, Jaoul O, Monte JM, Seydoux-Guillaume AM, Wirth R. 2006. Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ↔ 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70: 2325–2336. [CrossRef] [Google Scholar]
  • Gebauer D, Bernard-Griffiths J, Grünenfelder M. 1981. U-Pb zircon and monazite dating of a mafic-ultramafic complex and its country rocks. Contrib Mineral Petrol 76: 292–300. [CrossRef] [Google Scholar]
  • Gil Ibarguchi JI, Mendia M, Girardeau J, Peucat J-J. 1990. Petrology of eclogites and clinopyroxene-garnet metabasites from the Cabo Ortegal Complex (northwestern Spain). Lithos 25: 133–162. [CrossRef] [Google Scholar]
  • Godard G. 1983. Dispersion tectonique des éclogites de Vendée lors d’une collision continent-continent. Bull Minéral 106: 719–722. [Google Scholar]
  • Godard G. 1988. Petrology of some eclogites in the Hercynides: the eclogites from the southern Armorican massif, France. In: Smith DC, ed. Eclogites and eclogite-facies rocks. Amsterdam: Elsevier, pp. 451–519. [Google Scholar]
  • Godard G. 2001. The Les Essarts eclogite-bearing metamorphic complex (Vendée, southern Armorican Massif, France): Pre-Variscan terrains in the Hercynian belt. Géologie de la France 2001 (1-2): 19–51 + 2 maps. [Google Scholar]
  • Godard G. 2009. Two orogenic cycles recorded in eclogite-facies gneiss from the southern Armorican Massif (France). Eur J Mineral 21: 1173–1190. [Google Scholar]
  • Godard G, van Roermund HLM. 1995. On clinopyroxene strain-induced microfabrics from eclogites. J Struct Geol 17: 1425–1443. [CrossRef] [Google Scholar]
  • Godard G, Bonnet JY. 2007. Les éclogites et gneiss coronitiques de l’Unité des Essarts (Vendée). Guide d’excursion géologique. Le Naturaliste vendéen 7: 3–25, 3 plates. [Google Scholar]
  • Godard G, Smith DC, Jaujard D, Doukkari S. 2024. Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix. Eur J Mineral 36: 99–112. https://doi.org/10.5194/ejm-36-99-2024. [CrossRef] [Google Scholar]
  • Gyomlai T, Yamato P, Godard G. 2023. Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France). Eur J Mineral 35: 589–611. https://doi.org/10.5194/ejm-35-589-2023. [CrossRef] [Google Scholar]
  • de Hoÿm de Marien L, Pitra P, Poujol M, Cogné N, Cagnard F, Le Bayon B. 2023. Complex geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif Central). J Metamorph Geol 41: 967–995. [CrossRef] [Google Scholar]
  • Kroner U, Romer RL. 2013. Two plates − many subduction zones: The Variscan orogeny reconsidered. Gondwana Res 24: 298–329. [CrossRef] [Google Scholar]
  • Lahondère D, Chèvremont P, Godard G, Stussi JM, Bouton P. 2009. Notice de la carte géologique de la France (1/50 000), feuille Palluau (535), 171 p. + annexes (26 p.), BRGM éditions. [Google Scholar]
  • Le Bayon B, Pitra P, Ballèvre M, Bohn M. 2006. Reconstructing P-T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J Metamorph Geol 24: 477–496. [CrossRef] [Google Scholar]
  • Le Breton N, Thompson AB. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99: 226–237. [CrossRef] [Google Scholar]
  • Lotout C, Pitra P, Poujol M, Anczkiewicz R, van Den Driessche J. 2018. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: a multimethod geochronological study from the Najac Massif. Lithos 308-309: 381–394. [Google Scholar]
  • Lotout C, Poujol M, Pitra P, Anczkiewicz R, van Den Driessche J. 2020. From burial to exhumation: emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod Petrochronology, case study from the Lévezou Massif (French Massif Central, Variscan Belt). J Petrol 61. https://doi.org/10.1093/petrology/egaa046. [CrossRef] [Google Scholar]
  • Massonne HJ, Li B. 2022. Eclogite with unusual atoll garnet from the southern Armorican Massif, France: pressure-temperature path and geodynamic implications. Tectonophysics 823. https://doi.org/10.1016/j.tecto.2021.229183. [CrossRef] [Google Scholar]
  • Mauler A, Godard G, Kunze K. 2001. Crystallographic fabrics of omphacite, rutile and quartz in Vendée eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342: 81–112. [CrossRef] [Google Scholar]
  • Montigny R, Allègre C. 1974. Aʔ la recherche des océans perdus: les éclogites de Vendée témoins métamorphisées d’une ancienne croÛte océanique. C R Acad Sci Paris (D) 279: 543–545. [Google Scholar]
  • Nosenzo F, Manzotti P, Poujol M, Ballèvre M, Langlade J. 2021. A window into an older orogenic cycle: P-T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps). J Metamorph Geol 40: 789–821. https://doi.org/10.1111/jmg.12646. [Google Scholar]
  • Ordonez Casado B, Gebauer D, Schäfer HJ, Gil Ibarguchi JI, Peucat J-J. 2001. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 332: 359–385. [CrossRef] [Google Scholar]
  • Paquette J-L., Peucat J-J., Bernard-Griffiths J, Marchand J. 1985. Evidence for old Precambrian relics shown by U-Pb zircon dating of eclogites and associated rocks in the Hercynian belt of South Brittany, France. Chem Geol 52: 203–216. [Google Scholar]
  • Paquette J-L. 1987. Comportement des systèmes isotopiques U-Pb et Sm-Nd dans le métamorphisme éclogitique. Chaîne hercynienne et chaîne alpine. Mémoires et Documents du Centre armoricain d’étude structurale des socles 14: 1–190. [Google Scholar]
  • Paquette J-L., Monchoux P, Couturier M. 1995. Geochemical and isotopic study of a norite-eclogite transition in the European Variscan belt: implications for U-Pb zircon systematics in metabasic rocks. Geochim Cosmochim Acta 59: 1611–1622. [CrossRef] [Google Scholar]
  • Paquette JL, Ballèvre M, Peucat JJ, Cornen G. 2017. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France). Lithos 294-295: 418–437. [CrossRef] [Google Scholar]
  • Peucat JJ, Vidal P, Godard G, Postaire B. 1982. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt? Earth Planet Sci Lett 60: 70–78. [CrossRef] [Google Scholar]
  • Peucat JJ. 1983. Géochronologie des roches métamorphiques (Rb-Sr et U-Pb). Exemples choisis au Groenland, en Laponie, dans le Massif Armoricain et en Grande Kabylie. Mem Soc Géol Minéral Bretagne 28: 158. [Google Scholar]
  • Pitra P, Poujol M, van den Driessche J, Bretagne E, Lotout C, Gogné N. 2022. Late Variscan (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-hosted eclogites? (Montagne Noire, France). J Metamorph Geol 40: 39–65. [CrossRef] [Google Scholar]
  • Postaire B. 1983. Systématique Pb commun et U-Pb sur zircons. Applications aux roches de haut grade métamorphique impliquées les dans la chaîne hercynienne (Europe de l’Ouest) et aux granulites de Laponie (Finlande). Bull Soc Géol Minéral Bretagne (C) 15: 29–72. [Google Scholar]
  • Pyle JM, Spear FS. 2000. An empirical garnet (YAG) − xenotime thermometer. Contrib Mineral Petrol 138: 51–58. [CrossRef] [Google Scholar]
  • Roger F, Matte P. 2005. Early Variscan HP metamorphism in the western Iberian Allochthon − A 390 Ma U-Pb age for the Bragança eclogite (NW Portugal). Int J Earth Sci 94: 173–179. [CrossRef] [Google Scholar]
  • Solís-Alulima B, López-Carmona A, Abati J. 2020. Ordovician metamorphism and magmatism preserved in the Ossa Morena complex: SHRIMP geochronology, geochemistry and Sr-Nd isotopic signatures of the Sierra Albarrana Domain (SW Iberian Massif). Lithos 374-375: 105700. [CrossRef] [Google Scholar]
  • Stacey JS, Kramer JD. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26: 207–221. [CrossRef] [Google Scholar]
  • Stevens G, Clemens JD, Droop GTR. 1997. Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128: 352–370. [CrossRef] [Google Scholar]
  • Wawrzenitz N, Krohe A, Rhede D, Romer RL. 2012. Dating rock deformation with monazite: the impact of dissolution precipitation creep. Lithos 132-135: 52–74. [CrossRef] [Google Scholar]
  • Villa IM. 2016. Diffusion in mineral geochronometers: present and absent. Chem Geol 420: 1–10. [CrossRef] [Google Scholar]
  • Waters DJ, Whales CJ. 1984. Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa. Contrib Mineral Petrol 88: 269–275. [CrossRef] [Google Scholar]
  • Whitney DL, Roger F, Teyssier C, Rey PF, Respaut J-F. 2015. Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome: the P-T-t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth Planet Sci Lett 430: 224–234. [CrossRef] [Google Scholar]
  • Williams ML, Jercinovic MJ, Hetherington CJ. 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35: 137–175. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.