Open Access
Issue |
BSGF - Earth Sci. Bull.
Volume 190, 2019
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/bsgf/2019008 | |
Published online | 14 June 2019 |
- Abascal JLF, Vega C. 2005. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23): 234505. [CrossRef] [PubMed] [Google Scholar]
- ADEME. 2018. Methycentre – Unité de Power-to-Gas couplée à une unité de méthanisation. Available from https://www.ademe.fr/methycentre. [Google Scholar]
- Ahmed S, Ferrando N, Hemptinne J-C de, Simonin J-P, Bernard O, Baudouin O. 2016. A new PC-SAFT model for pure water, water–hydrocarbons, and water–oxygenates systems and subsequent modeling of VLE, VLLE, and LLE. J Chem Eng Data 61(12): 4178–4190. [CrossRef] [Google Scholar]
- Ahmed S, Ferrando N, Hemptinne J-C de, Simonin J-P, Bernard O, Baudouin O. 2018. Modeling of mixed-solvent electrolyte systems. Fluid Phase Equilib 459: 138–157. [CrossRef] [Google Scholar]
- Ahrens M, Heusler KE. 1981. Solubilities of some gases in liquid ammonia. Z Phys Chem NF 1981: 127–128. [CrossRef] [Google Scholar]
- Akinfiev NN, Diamond LW. 2003. Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters. Geochim Cosmochim Acta 67(4): 613–629. [CrossRef] [Google Scholar]
- Allen MP, Tildesley DJ. 1987. Computer simulation of liquids. Oxford: University Press. [Google Scholar]
- Alvarez J, Crovetto R, Fernandez-Prini R. 1988. The dissolution of N2 and of H2 in water from room temperature to 640 K. Ber Bunsen-Ges Phys Chem 92: 935–940. [CrossRef] [Google Scholar]
- Bachaud P, Meiller C, Brosse E, Durand I, Beaumont V. 2017. Modeling of hydrogen genesis in ophiolite massif. Proced Earth Plan Sc 17: 265–268. [CrossRef] [Google Scholar]
- Bohr C. 1905. Absorptionscoëfficienten des Blutes und des Blutplasmas für Gase 1. Skandinavisches Archiv Für Physiologie 17(1): 104–112. [CrossRef] [Google Scholar]
- Braun L. 1900. Solubility Data Series. Z Phys Chem 33: 721–741. [Google Scholar]
- Bunsen R. 1855. On the law of absorption of gases. Philos Mag J Sci 9: 116–130. [CrossRef] [Google Scholar]
- Carden P, Paterson L. 1979. Physical, chemical and energy aspects of underground hydrogen storage. Int J Hydrogen Energy 4(6): 559–569. [CrossRef] [Google Scholar]
- Carvalho PJ, Pereira LMC, Gonçalves NPF, Queimada AJ, Coutinho JAP. 2015. Carbon dioxide solubility in aqueous solutions of NaCl. Measurements and modeling with electrolyte equations of state. Fluid Phase Equilib 388: 100–106. [CrossRef] [Google Scholar]
- Cassuto L. 1903. Sulla solubilità dei gas nei liqdidi. Il Nuovo Cimento (1901-1910) 6(1): 5–20. [CrossRef] [Google Scholar]
- Chandrasekhar J, Spellmeyer DC, Jorgensen WL. 1984. Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1−), and chloride(1−) ions. J Am Chem Soc 106(4): 903–910. [CrossRef] [Google Scholar]
- Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology 191(4): 345–359. [CrossRef] [Google Scholar]
- Charlou J-L, Donval JP, Konn C, Ondreas H, Fouquet Y, Jean-Baptiste P, et al. 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Washington DC American Geophysical Union Geophysical Monograph Series 188: 265–295. [Google Scholar]
- Choudhary VR, Parande MG, Brahme PH. 1982. Simple apparatus for measuring solubility of gases at high pressures. Ind Eng Chem Fund 21(4): 472–474. [CrossRef] [Google Scholar]
- Courtial X, Ferrando N, Hemptinne J-C de, Mougin P. 2014. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications. Geochim Cosmochim Acta 142(Supplement C): 1–14. [CrossRef] [Google Scholar]
- Cramer SD. 1982. The solubility of methane, carbon dioxide, and oxygen in brines from 0 degrees to 300 °C. Bur Mines Rep Invest RI 8706: 1–17. [Google Scholar]
- Creton B, Nieto-Draghi C, Bruin T de, Lachet V, El Ahmar E, Valtz A, et al. 2018. Thermodynamic study of binary systems containing sulphur dioxide and nitric oxide. Measurements and modelling. Fluid Phase Equilib 461: 84–100. [CrossRef] [Google Scholar]
- Crozier TE, Yamamoto S. 1974. Solubility of hydrogen in water, sea water, and sodium chloride solutions. J Chem Eng Data 19(3): 242–244. [CrossRef] [Google Scholar]
- Darkrim F, Vermesse J, Malbrunot P, Levesque D. 1999. Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. Comparison with experiments. J Chem Phys 110(8): 4020–4027. [CrossRef] [Google Scholar]
- Darras C, Muselli M, Poggi P, Voyant C, Hoguet J-C, Montignac F. 2012. PV output power fluctuations smoothing. The MYRTE platform experience. Int J Hydrogen Energy 37(19): 14015–14025. [CrossRef] [Google Scholar]
- Delhommelle J, Millie P. 2001. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys 99: 619–625. [CrossRef] [Google Scholar]
- Deville E, Prinzhofer A. 2016. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia. Chem Geol 440: 139–147. [CrossRef] [Google Scholar]
- Dohrn R, Brunner G. 1986. Phase equilibria in ternary and quaternary systems of hydrogen, water and hydrocarbons at elevated temperatures and pressures. Fluid Phase Equilib 29: 535–544. [CrossRef] [Google Scholar]
- Drucker K, Moles E. 1910. Gas solubility in aqueous solutions of glycerol and isobutyric acid. Z Phys Chem Stoechiom Verwandtschaftsl 75: 405–436. [Google Scholar]
- Duan ZH, Sun R. 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4): 257–271. [CrossRef] [Google Scholar]
- Duan Z, Moller N, Weare JH. 1996. Prediction of the solubility of H2S in NaCl aqueous solution: An equation of state approach. Chem Geol 130: 15–20. [CrossRef] [Google Scholar]
- Duan Z, Moller N, Weare JH. 2003. Equations of state for the NaCl-H2O-CH4 system and the NaCl-H2O-CO2-CH4 system: Phase equilibria and volumetric properties above 573 K. Geochim Cosmochim Acta 67: 671–680. [CrossRef] [Google Scholar]
- Duan ZH, Moller N, Greenberg J, Weare JH. 1992. The prediction of methane solubility in natural-waters to high ionic-strength from 0-degrees-C to 250-degrees-C and from 0 to 1600 Bar. Geochim Cosmochim Acta 56(4): 1451–1460. [CrossRef] [Google Scholar]
- ENGIE. 2018. GRHYD. Available from https://www.engie.com/innovation-transition-energetique/pilotage-digital-efficacite-energetique/power-to-gas/projet-demonstration-grhyd/. [Google Scholar]
- Fauve R, Guichet X, Lachet V, Ferrando N. 2017. Prediction of H2S solubility in aqueous NaCl solutions by molecular simulation. J Pet Sci Eng 157: 94–106. [CrossRef] [Google Scholar]
- Fernández-Prini R, Alvarez JL, Harvey AH. 2003. Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J Phys Chem Ref Data 32(2): 903–916. [CrossRef] [Google Scholar]
- Ferrando N, Ungerer P. 2007. Hydrogen/hydrocarbon phase equilibrium modelling with a cubic equation of state and a Monte Carlo method. Fluid Phase Equilib 254(1–2): 211–223. [CrossRef] [Google Scholar]
- Findlay A, Shen B. 1912. The influence of colloids and fine suspensions on the solubility of gases in water. Part II. Solubility of carbon dioxide and hydrogen. J Chem Soc 101: 1459–1468. [CrossRef] [Google Scholar]
- Frenkel D, Smit B. 1996. Understanding molecular simulation: From algorithms to applications. San Diego: Academic Press. [Google Scholar]
- Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT. 2010. The IUPAC-NIST solubility data series: A guide to preparation and use of compilations and evaluations. J Phys Chem Ref Data 39(2): 23101. [CrossRef] [Google Scholar]
- Geffken G. 1904. Contribution on the knowledge of the interference solubility. Z Phys Chem Stoechiom Verwandtschaftsl 49: 257–302. [Google Scholar]
- Gerecke J, Bittrich HJ. 1971. The solubility of H2, CO2 and NH3 in an aqueous electrolyte solution. Wiss Z Tech Hochsch Chem Carl Shorlemmer Leuna Merseburg 13: 115–122. [Google Scholar]
- Gillespie PC, Wilson GM. 1980. Vapor-liquid equilibrium data on water-substitute gas components: N2-H2O, H2-H2O, CO-H2O, H2-CO-H2O and H2S-H2O. GPA Research Report, 1980. [Google Scholar]
- Gniewosz S, Walfisz A. 1887. The absorption of gases by petroleum. Z Phys Chem Stoechiom Verwandtschaftsl 1: 70–72. [Google Scholar]
- Gordon LI, Cohen Y, Standley DR. 1977. The solubility of molecular hydrogen in seawater. Deep Sea Research 24(10): 937–941. [CrossRef] [Google Scholar]
- Guélard J, Beaumont V, Rouchon V, Guyot F, Pillot D, Jézéquel D, et al. 2017. Natural H2 in Kansas. Deep or shallow origin? Geochem Geophys Geosyst 18(5): 1841–1865. [CrossRef] [Google Scholar]
- Held C, Reschke T, Mohammad S, Luza A, Sadowski G. 2014. ePC-SAFT revised. Chem Eng Res Des 92(12): 1884–1897. [CrossRef] [Google Scholar]
- Hemptinne JC de, Mougin P, Barreau A, Ruffine L, Tamouza S, Inchekel R. 2006. Application to petroleum engineering of statistical thermodynamics– Based equations of state. Oil & Gas Sci Tech – Rev IFP Energies nouvelles 61(3): 363–386. [CrossRef] [Google Scholar]
- Huefner G. 1907. Study of the absorption of nitrogen and hydrogen in aqueous solutions. Z Phys Chem Stoechiom Verwandtschaftsl 57: 611–625. [Google Scholar]
- Ipatev VV, Druzhina-Artemovitch SI, Tikhomirov VI. 1931. Solubility of hydrogen in water under pressure. Zh Obshch Khim 1: 594–597. [Google Scholar]
- Ipatiew WW, Drushina-Artemowitsch SI, Tichomirow WI. 1932. Löslichkeit des Wasserstoffs in Wasser unter Druck. Ber dtsch Chem Ges A/B 65 (4): 568–571. [CrossRef] [Google Scholar]
- Ji X, Tan SP, Adidharma H, Radosz M. 2005. SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems. Ind Eng Chem Res 44(22): 8419–8427. [CrossRef] [Google Scholar]
- Jiang H, Economou IG, Panagiotopoulos AZ. 2017. Molecular modeling of thermodynamic and transport properties for CO2 and aqueous brines. Acc Chem Res 50(4): 751–758. [CrossRef] [Google Scholar]
- Kishima N, Sakai H. 1984. Fugacity-concentration relationship of dilute hydrogen in water at elevated temperature and pressure. Earth Planet Sci Lett 67(1): 79–86. [CrossRef] [Google Scholar]
- Knaster MB, Apelbaum LA. 1964. Solubility of hydrogen and oxygen in concentrated potassium hydroxide solution. Russ J Phys Chem 38: 120–122. [Google Scholar]
- Kong CL. 1973. Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12-6) potential and the Morse potential. J Chem Phys 59: 2464. [CrossRef] [Google Scholar]
- Kontogeorgis GM, Folas GK. 2010. Thermodynamic models for industrial applications: From classical and advanced mixing rules to association theories. Chichester: Wiley. [Google Scholar]
- Larin N, Zgonnik V, Rodina S, Deville E, Prinzhofer A, Larin VN. 2015. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia. Natural Resources Research 24(3): 369–383. [CrossRef] [Google Scholar]
- Le Duigou A, Bader A-G., Lanoix J-C., Nadau L. 2017. Relevance and costs of large scale underground hydrogen storage in France. Int J Hydrogen Energy 42(36): 22987–3003. [CrossRef] [Google Scholar]
- Li D, Beyer C, Bauer S. 2018. A unified phase equilibrium model for hydrogen solubility and solution density. Int J Hydrogen Energy 43(1): 512–529. [CrossRef] [Google Scholar]
- Li J, Wei L, Li X. 2015. An improved cubic model for the mutual solubilities of CO2-CH4-H2S-brine systems to high temperature, pressure and salinity. Applied Geochemistry 54: 1–12. [CrossRef] [Google Scholar]
- Liu Y, Lafitte T, Panagiotopoulos AZ, Debenedetti PG. 2013. Simulations of vapor-liquid phase equilibrium and interfacial tension in the CO2-H2O-NaCl system. AIChE J 59(9): 3514–3522. https://doi.org/10.1002/aic.14042. [CrossRef] [Google Scholar]
- Llovell F, Marcos RM, MacDowell N, Vega LF. 2012. Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the soft-SAFT approach. J Phys Chem B 116(26): 7709–7718. [CrossRef] [Google Scholar]
- Longo LD, Delivora-Papadopoulos M, Power GG, Hill EP, Forster RE. 1970. Diffusion equilibration of inert gases between maternal and fetal placenta capillaries. Am J Physiol 1970: 561–569. [CrossRef] [Google Scholar]
- Lord AS, Kobos PH, Borns DJ. 2014. Geologic storage of hydrogen. Scaling up to meet city transportation demands. Int J Hydrogen Energy 39(28): 15570–15582. [CrossRef] [Google Scholar]
- Lubarsch O. 1889. Ueber die Absorption von Gasen in Gemischen von Alkohol und Wasser. Ann Phys 273(7): 524–525. [CrossRef] [Google Scholar]
- Mackie AD, Tavitian B, Boutin A, Fuchs AH. 1997. Vapour-liquid phase equilibria predictions of methane-alkane mixtures by Monte Carlo simulation. Mol Sim 19(1): 1–15. [CrossRef] [Google Scholar]
- Maribo-Mogensen B, Thomsen K, Kontogeorgis GM. 2015. An electrolyte CPA equation of state for mixed solvent electrolytes. AIChE J 61(9): 2933–2950. [CrossRef] [Google Scholar]
- Meyer M, Tebbe U, Piiper J. 1980. Solubility of inert gases in dog blood and skeletal muscle. Pflügers Archiv 384(2): 131–134. [CrossRef] [Google Scholar]
- Milligan LH. 1923. The solubility of gasoline (hexane and heptane) in water at 25 °C. J Phys Chem 28(5): 494–497. https://doi.org/10.1021/j150239a006. [CrossRef] [Google Scholar]
- Moretti I, Dagostino A, Werly J, Ghost C, Defrenne D, Gorintin L. 2018. L’hydrogène naturel : un nouveau pétrole ? Pour la Science 485: 22–26. [Google Scholar]
- Morris DR, Yang L, Giraudeau F, Sun X, Steward FR. 2001. Henry’s law constant for hydrogen in natural water and deuterium in heavy water. Phys Chem Chem Phys 3(6): 1043–1046. [CrossRef] [Google Scholar]
- Morrison TJ, Billett F. 1952. 730. The salting-out of non-electrolytes. Part II. The effect of variation in non-electrolyte. J Chem Soc (0): 3819–3822. https://doi.org/10.1039/JR9520003819. [CrossRef] [Google Scholar]
- Mueller C. 1912. The absorption of oxygen, nitrogen and hydrogen in aqueous solution of non-electrolytes. Z Phys Chem Stoechiom Verwandtschaftsl 81: 483–503. [Google Scholar]
- Nezbeda I, Kolafa J. 1991. A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol Sim 5: 391–403. [CrossRef] [Google Scholar]
- Nichita DV, Broseta D, Elhorga P, Montel F. 2008. Pseudo-component delumping for multiphase equilibrium in hydrocarbon-water mixtures. Petroleum Science and Technology 26(17): 2058–2077. [CrossRef] [Google Scholar]
- Panfilov M. 2015. Underground and pipeline hydrogen storage. In Subramani V, Basile A, Veziroğlu TN, eds.Compendium of hydrogen energy. Cambridge, UK: Woodhead Publishing, an imprint of Elsevier, pp. 91–115. [Google Scholar]
- Patel BH, Paricaud P, Galindo A, Maitland GC. 2003. Prediction of the salting-out effect of strong electrolytes on water + alkane solutions. Ind Eng Chem Res 42(16): 3809–3823. [CrossRef] [Google Scholar]
- Paterson L. 1983. The implications of fingering in underground hydrogen storage. Int J Hydrogen Energy 8(1): 53–59. [CrossRef] [Google Scholar]
- Peng DY, Robinson DB. 1976. A new two-constant equation of state. Ind Eng Chem Fund 15(1): 59–64. [Google Scholar]
- Perez A, Perez E, Dupraz S, Bolcich J. 2016. 21st World Hydrogen Energy Conference 2016 (WHEC 2016), Zaragossa, Spain, 2016. [Google Scholar]
- Plennevaux C, Ferrando N, Kittel J, Frégonèse M, Normand B, Cassagne T, et al. 2013. pH prediction in concentrated aqueous solutions under high pressure of acid gases and high temperature. Corros Sci 73: 143–149. [CrossRef] [Google Scholar]
- Plyasunov AV, Bazarkina EF. 2018. Thermodynamic properties of dilute hydrogen in supercritical water. Fluid Phase Equilib 470: 140–148. [CrossRef] [Google Scholar]
- Plyasunov AV, Shock EL. 2001. Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochim Cosmochim Acta 65(21): 3879–3900. [CrossRef] [Google Scholar]
- Power GG, Stegall H. 1970. Solubility of gases in human red blood cell ghosts. J Appl Physiol 29: 145–149. [CrossRef] [Google Scholar]
- Pray HA, Schweickert CE, Minnich BH. 1952. Solubility of hydrogen, oxygen, nitrogen, and helium in water at elevated temperatures. Ind Eng Chem 44(5): 1146–1151. [CrossRef] [Google Scholar]
- Prinzhofer A, Deville E. 2015. Hydrogène naturel. La prochaine révolution énergétique ? Paris : Belin. [Google Scholar]
- Prinzhofer A, Cisse CST, Diallo AB. 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int J Hydrogen Energy 43: 19315–19326. [Google Scholar]
- Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, et al. 2019. Natural hydrogen continuous emission from sedimentary basins. The example of a Brazilian H2-emitting structure. Int J Hydrogen Energy 44(12): 5676–5685. [Google Scholar]
- Purwanto, Deshpande RM, Chaudhari RV, Delmas H. 1996. Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J Chem Eng Data 41(6): 1414–1417. [CrossRef] [Google Scholar]
- Qiao C, Li L, Johns RT, Xu J. 2016. Compositional modeling of dissolution-induced injectivity alteration during CO2 flooding in carbonate reservoirs. SPE J 21(3): 809–826. [CrossRef] [Google Scholar]
- Reitenbach V, Ganzer L, Albrecht D, Hagemann B. 2015. Influence of added hydrogen on underground gas storage: A review of key issues. Environ. Earth Sci 73(11): 6927–6937. [CrossRef] [Google Scholar]
- Rowe AM. 1970. Pressure- volume-temperature concentration relation of aqueous NaCl solutions. J Chem Eng Data 15(1): 61–66. [CrossRef] [Google Scholar]
- Rowley RL, Wilding WV, Oscarson JL, Yang Y, Zundel NA, Daubert TE, et al. 2003. DIPPR® data compilation of pure compounds properties. New York, NY: Design Institute for Physical Properties, AIChE. [Google Scholar]
- Rozmus J, Hemptinne JC de, Galindo A, Dufal S, Mougin P. 2013. Modeling of strong electrolytes with ePPC-SAFT up to high temperatures. Ind Eng Chem Res 52: 9979–9994. [CrossRef] [Google Scholar]
- Ruetschi P, Amlie RF. 1966. Solubility of hydrogen in potassium hydroxide and sulfuric acid. Salting-out and hydration. J Phys Chem 70(3): 718–723. [CrossRef] [Google Scholar]
- Rumpf B, Xia J, Maurer G. 1998. Solubility of carbon dioxide in aqueous solutions containing acetic acid or sodium hydroxide in the temperature range from 313 to 433 K and at total pressures up to 10 MPa. Ind Eng Chem Res 37(5): 2012–2019. [CrossRef] [Google Scholar]
- Satake H, Ohashi M, Hayashi Y. 1984. Discharge of H2 from the Atotsugawa and Ushikubi Faults, Japan, and its relation to earthquakes. Pure and Applied Geophysics 122(2): 185–193. [CrossRef] [Google Scholar]
- Sato M, Sutton AJ, McGee KA, Russell-Robinson S. 1986. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980- 1984. J Geophys Res 91(B12): 12315–12326. [CrossRef] [Google Scholar]
- Seward TM, Franck EU. 1981. The system hydrogen – water up to 440 °C and 2500 bar pressure. Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 85(1): 2–7. [CrossRef] [Google Scholar]
- Soave G. 1972. Equilibrium constants for a modified Redlich-Kwong equation of state. Chem Eng Sci 27: 1197–1203. [Google Scholar]
- Soreide I, Whitson C. 1992. Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine. Fluid Phase Equilib 77: 217–240. [CrossRef] [Google Scholar]
- Sorensen H, Pedersen KS, Christensen PL. 2002. Modeling of gas solubility in brines. Org Geochem 33: 635–642. [CrossRef] [Google Scholar]
- Stefánsson A, Seward TM. 2003. Stability of chloridogold(I) complexes in aqueous solutions from 300 to 600 °C and from 500 to 1800 bar. Geochim Cosmochim Acta 67(23): 4559–4576. [CrossRef] [Google Scholar]
- Steiner P. 1894. Über die Absoprtion des Wasserstoffs im Wasser und in wässerigen Lösungen. Annalen der Physik und Chemie 52: 275–299. [CrossRef] [Google Scholar]
- Sun R, Dubessy J. 2012. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part II: Application to H2O-NaCl and CO2 + H2O + NaCl System. Geochim Cosmochim Acta 88(0): 130–145. [CrossRef] [Google Scholar]
- Theodorou DN. 2010. Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res 49: 3047–3058. [CrossRef] [Google Scholar]
- Timofeev VS. 1890. The absorption of hydrogen and oxygen in water and alcohol. Z Phys Chem Stoechiom Verwandtschaftsl 6: 141–152. [Google Scholar]
- Torrie GM, Valleau JP. 1977. Non-physical sampling distributions in Monte-Carlo free-energy estimation – Umbrella Sampling. J Comput Phys 23(2): 187–199. [NASA ADS] [CrossRef] [Google Scholar]
- Trinh T-K-H, Hemptinne J-C de, Lugo R, Ferrando N, Passarello J-P. 2016a. Hydrogen solubility in hydrocarbon and oxygenated organic compounds. J Chem Eng Data 61(1): 19–34. https://doi.org/10.1021/acs.jced.5b00119. [CrossRef] [Google Scholar]
- Trinh T-K-H, Passarello J-P, Hemptinne J-C de, Lugo R, Lachet V. 2016b. A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation. J Chem Phys 144(12): 124902. Available from http://scitation.aip.org/content/aip/journal/jcp/144/12/10.1063/1.4944068. [CrossRef] [Google Scholar]
- Tsai ES, Jiang H, Panagiotopoulos AZ. 2016. Monte Carlo simulations of H2O-CaCl2 and H2O-CaCl2-CO2 mixtures. Fluid Phase Equilib 407: 262–268. [CrossRef] [Google Scholar]
- Ungerer P, Tavitian B, Boutin A. 2005. Applications of molecular simulation in the oil and gas industry. Paris: Editions Technip. [Google Scholar]
- Ungerer P, Wender A, Demoulin G, Bourasseau E, Mougin P. 2004. Application of Gibbs ensemble and NPT Monte Carlo simulation to the development of improved processes for H2S-rich Gases. Mol Sim 30(10): 631–648. [CrossRef] [Google Scholar]
- Vacquand C, Deville E, Beaumont V, Guyot F, Sissmann O, Pillot D, et al. 2018. Reduced gas seepages in ophiolitic complexes. Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochim Cosmochim Acta 223: 437–461. [CrossRef] [Google Scholar]
- Vorholz J, Harismiadis VI, Panagiotopoulos AZ, Rumpf B, Maurer G. 2004. Molecular simulation of the solubility of carbon dioxide in aqueous solutions of sodium chloride. Fluid Phase Equilib 226: 237–250. [CrossRef] [Google Scholar]
- Waldmann M, Hagler AT. 1993. New combining rules for rare gas van der waals parameters. J Comput Chem 14: 1077–1084. [CrossRef] [Google Scholar]
- Wei Z, Zhang D. 2013. A fully coupled multiphase multicomponent flow and geomechanics model for enhanced coalbed-methane recovery and CO2 storage. SPE J 18(3): 448–467. [CrossRef] [Google Scholar]
- Wet WJ de. 1964. Determination of gas solubilities in water and some organc liquids. J S Afr Chem Inst 17: 9–13. [Google Scholar]
- Widom B. 1963. Some topics in the theory of fluids. J Chem Phys 39: 2808–2812. [CrossRef] [Google Scholar]
- Winkler LW. 1891. Die Löslichkeit der Gase in Wasser. Ber Dtsch Chem Ges 24(1): 89–101. [CrossRef] [Google Scholar]
- Winkler LW. 1906. Regularity in the absorption of gases in liquids (second communication). Z Phys Chem Stoechiom Verwandtschaftsl 55: 344–354. [Google Scholar]
- Xia J, Rumpf B, Maurer G. 1999. Solubility of carbon dioxide in aqueous solutions containing sodium acetate or ammonium acetate at temperatures from 313 to 433 K and pressures up to 10 MPa. Fluid Phase Equilib 155(1): 107–125. [CrossRef] [Google Scholar]
- Xia J, Pérez-Salado Kamps Á, Rumpf B, Maurer G. 2000. Solubility of hydrogen sulfide in aqueous solutions of the single salts sodium sulfate, ammonium sulfate, sodium chloride, and ammonium chloride at temperatures from 313 to 393 K and total pressures up to 10 MPa. Ind Eng Chem Res. 39(4): 1064–1073. https://doi.org/10.1021/ie990416p. [CrossRef] [Google Scholar]
- Yan W, Huang S, Stenby EH. 2011. Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density. International Journal of Greenhouse Gas Control 5(6): 1460–1477. [CrossRef] [Google Scholar]
- Younglove BA. 1982. Thermophysical properties of fluids I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride and oxygen. J Phys Chem Ref Data 11(Supplement 1): 1. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.