Special Issue L’Ambre
Open Access
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue L’Ambre
Numéro d'article 17
Nombre de pages 11
DOI https://doi.org/10.1051/bsgf/2020018
Publié en ligne 26 juin 2020
  • Anderson KB. 1994. The nature and fate of natural resins in the geosphere – IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia – Evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Organic Geochemistry 21: 209–212. [CrossRef] [Google Scholar]
  • Anderson KB, Crelling JC. 1995. Introduction. In: Anderson KB, Crelling JC, eds. Amber, resinite, and fossil resins. American Chemical Society Symposium Series 617: xi–xvii. [Google Scholar]
  • Anonymous. 1942. Le copal. Bruxelles: Publications de l’Office Colonial, pp. 1–7. [Google Scholar]
  • Ansorge J. 2007. Upper Triassic insects and amber from Lesotho. In: 4th International Conference on Fossil Insects, Arthropods and Amber, Pretoria, South Africa. Abstract book, pp. 52–54. [Google Scholar]
  • Antoine PO, De Franceschi D, Flynn JJ, Nel A, Baby P, Benammi M, et al. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences of the USA 103: 13595–13600. https://doi.org/10.1073pnas.0605801103. [CrossRef] [Google Scholar]
  • Arua I. 1979. Eocene amber from the Umuchia-Bende area. The Nigerian Field 44: 119–126. [Google Scholar]
  • Arua I. 1986. Paleoenvironment of Eocene deposits in the Afikpo syncline, southern Nigeria. Journal of African Earth Sciences 5: 279–284. [CrossRef] [Google Scholar]
  • Aubréville AM. 1933. Les copaliers de l’Afrique occidentale française. Bulletin de l’Agence Générale des Colonies 292: 981–986. [Google Scholar]
  • Azevedo CO, Madl M, Olmi M. 2010. A catalogue of the Bethylidae, Chrysididae, Dryinidae, Embolemidae, Sclerogibbidae and Scolebythidae (Hymenoptera: Chrysidoidea) of the Malagasy subregion. Linzer Biologische Beiträge 42(2): 845–918. [Google Scholar]
  • Belay T, Tesfay I, Ayalew A, Yohannes G, Zewdie T, Bekele H, et al. 2009. Geology of the Were-Ilu area. Geological Survey of Ethiopia, Memoir 25: 56 pp. + map. [Google Scholar]
  • Bervoets R. 1909a. Un Coréide nouveau du copal récent de Zanzibar [Hem. Coreidae]. Bulletin de la Société Entomologique de France 14(19): 331–332. [Google Scholar]
  • Bervoets R. 1909b. Un Aradide nouveau du copal récent de Madagascar [Hem. Aradidae]. Bulletin de la Société Entomologique de France 14(16): 280–281. [Google Scholar]
  • Billing HJ. 1944. Congo copal. The Oil and Colour Trades Journal 3: 666–668. [Google Scholar]
  • Blaimer BB, Ward PS, Schultz TR, Fisher BL, Brady SG. 2018. Paleotropical diversification dominates the evolution of the hyperdiverse ant tribe Crematogastrini (Hymenoptera: Formicidae). Insect Systematics and Diversity 2(5): 3. https://doi.org/10.1093/isd/ixy013. [CrossRef] [Google Scholar]
  • Bosselaers J. 2004. A new Garcorops species from Madagascar copal (Araneae: Selenopidae). Zootaxa 445: 1–7. [CrossRef] [Google Scholar]
  • Bosselaers J, Dierick M, Cnudde V, Masschaele B, van Hoorebeke L, Jacobs P. 2010. High-resolution X-ray computed tomography of an extant new Donuea (Araneae: Liocranidae) species in Madagascan copal. Zootaxa 2427: 25–35. [CrossRef] [Google Scholar]
  • Bukejs A, Legalov AA. 2017. New species of sub-fossil weevils (Coleoptera, Curculionidae) in Madagascar copal. Paleontological Journal 51: 196–202. https://doi.org/10.1134/S003103011702006X. [CrossRef] [Google Scholar]
  • Cadena EA, Mejia-Molina A, Brito CM, Peñafiel S, Sanmartin KJ, Sarmiento LB. 2018. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils. Journal of South American Earth Sciences 83: 27–36. https://doi.org/10.1016/j.jsames.2018.02.004. [CrossRef] [Google Scholar]
  • Clifford DJ, Hatcher PG. 1995. Structural transformations of polylabdanoid resinites during maturation. Organic Geochemistry 23: 407–418. [CrossRef] [Google Scholar]
  • Dalman J. 1825. Om Insekter inneslutna i copal, jeinte beskrifning pa nagra, deribland förekommande nya slägten och arter. Kungliga Svenska Vetenskapsakademiens Handlingar 46: 375–410. [Google Scholar]
  • Delclòs X, Peñalver E, Ranaivosoa V, Solórzano-Kraemer MM. 2020. Unravelling the mystery of “Madagascar copal”: Age, origin and preservation of a Recent resin. PLoS ONE 15: e0232623. https://doi.org/10.1371/journal.pone.0232623. [CrossRef] [Google Scholar]
  • Delhaye-Prat V, Dupont G, Buratti N, Moron JM, Esnault J, Perrichot V, et al. 2016. The Vembo Shales (Republic of the Congo): New insights on the transition from lacustrine to marine settings for the South Atlantic. In: 35th International Geological Congress. AGI GeoRef Database, Paper no2850 (https://www.americangeosciences.org/igc/15032). [Google Scholar]
  • De Saussure H. Histoire naturelle des Hyménoptères. In: Grandidier A, ed. Histoire Physique, Naturelle et Politique de Madagascar, vol. 20. Paris : Imprimerie Nationale, 1890 [1892], xxi + 590 p. [Google Scholar]
  • De Wildeman E. 1927. Matériaux pour la flore forestière du Congo Belge. XIII. Sur un producteur de copal. Annales de la Société Scientifique de Bruxelles 47: 118–124. [Google Scholar]
  • De Wildeman E. 1933. Quelques considérations sur les résines dénomées « Copals ». Bulletin des séances – Institut Royal Colonial Belge 4(2): 478–497. [Google Scholar]
  • Gilg E. 1898. Ueber Gummi, Copale und andere Harze Afrikas. Chemische Revue 5 (9): 172–178. https://doi.org/10.1002/lipi.18980050903. [Google Scholar]
  • Gomez B, Bamford M, Martínez-Delclòs X. 2002a. Lower Cretaceous plant cuticles and amber (Kirkwood Formation, South Africa). Comptes Rendus Palevol 1: 83–87. [CrossRef] [Google Scholar]
  • Gomez B, Martínez-Delclòs X, Bamford M, Philippe M. 2002b. Taphonomy and palaeoecology of plant remains from the oldest African Early Cretaceous amber locality. Lethaia 35: 300–308. [CrossRef] [Google Scholar]
  • Grichanov IY. 2008. Systematic notes on Sciapodinae from Baltic amber and on Dolichopodidae from Tanzanian copal (Diptera). Caucasian Entomological Bulletin 4: 137–139. [CrossRef] [Google Scholar]
  • Grimaldi DA. 1996. Amber: window to the Past. New York: Harry N. Abrams, Inc. [Google Scholar]
  • Guilbert E, Heiss E. 2016. First fossil records of Tingidae from Madagascan copal with description of two new species (Hemiptera, Heteroptera). Linzer Biologische Beiträge 48: 1081–1090. [Google Scholar]
  • Hagedorn M. 1905–07. Kopalborkenkäfer. Verhandlungen des Vereins für Naturwissenschaftliche Unterhaltung zu Hamburg 13: 109–112. [Google Scholar]
  • Hand S, Archer M, Bickel D, Creaser P, Dettmann M, Godthelp H, et al. Australian Cape York amber. In: Penney D, ed. Biodiversity of fossils in amber from the major world deposits. Manchester, UK: Siri Scientific Press, 2010, pp. 69–79. [Google Scholar]
  • Handlirsch A. 1906–08. Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. Leipzig: Vertrag Wilhelm von Engelmann. [Google Scholar]
  • Hedley Barry T. 1932. Natural varnish resins. London: Ernest Benn Ltd. [Google Scholar]
  • Hellinckx L. 1935. Etudes sur le Copal – Congo. Mémoires de l’Institut Royal Colonial Belge 8: 1–63. [Google Scholar]
  • Howes FN. 1949. Vegetable Gums and Resins. Waltham, Massachusetts: Chronica Botanica. [Google Scholar]
  • Kiefert L. 2015. Natural green amber from Ethiopia. In: 34th International Gemmological Conference, Vilnius, Lithuania. Abstract book, pp. 22–25. [Google Scholar]
  • Kirk J. 1871. On the copal of Zanzibar. Journal of the Linnean Society. Botany 11: 1–4. https://doi.org/10.1111/j.1095-8339.1869.tb00047.x. [Google Scholar]
  • Krinsky WL. 1985. A Propalticus species in Kenyan amber (Coleoptera: Propalticidae). The Coleopterists Bulletin 39: 101–102. [Google Scholar]
  • Lambert JB, Johnson SC, Poinar GO Jr. 1995. Resin from Africa and South America: Criteria for distinguishing between fossilized and recent resin based on NMR spectroscopy. In: Anderson KB, Crelling JC, eds. Amber, resinite, and fossil resins. American Chemical Society Symposium Series 617: 193–202. [CrossRef] [Google Scholar]
  • Lambert JB, Heckenbach EA, Hurtley AE, Wu Y, Santiago-Blay JA. 2009. Nuclear magnetic resonance spectroscopic characterization of legume exudates. Journal of Natural Products 72: 1028–1035. [CrossRef] [Google Scholar]
  • Lambert JB, Poinar GO Jr. 2002. Amber: The organic gemstone. Accounts of Chemical Research 35: 628–636. [CrossRef] [Google Scholar]
  • Lambert JB, Tsai CY, Shah MC, Hurtley AE, Santiago-Blay JA. 2012. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry 54: 332–348. https://doi.org/10.1111/j.1475-4754.2011.00625.x. [CrossRef] [Google Scholar]
  • Lambert JB, Wu Y, Santiago-Blay JA. 2002. Modern and ancient resins from Africa and the Americas. In: Jakes KA, ed. Archeological chemistry. Materials, methods, and meaning. American Chemical Society Symposium Series 831: 64–83. [CrossRef] [Google Scholar]
  • Langenheim JH. 1990. Plant resins. American Sciences 78: 16–24. [Google Scholar]
  • Langenheim JH. 2003. Plant resins: chemistry, evolution, ecology, and ethnobotany. Portland, Oregon: Timber Press. [Google Scholar]
  • Langenheim JH, Lee YT, Martin SS. 1973. An evolutionary and ecological perspective of Amazonian Hylaea species of Hymeneae (Leguminosae: Caesalpinioideae). Acta Amazonica 3: 5–38. [CrossRef] [Google Scholar]
  • Le Gall P, Silvain JF, Nel A, Lachaise D. 2010. Les insectes actuels témoins des passés de l’Afrique : essai sur l’origine et la singularité de l’entomofaune de la région afrotropicale. Annales de la Société Entomologique de France 46: 297–343. [CrossRef] [Google Scholar]
  • Léonard J. 1950. Etude botanique des copaliers du Congo Belge. Publications de l’Institut National pour l’Etude Agronomique du Congo Belge, série scientifique 45: 1–158. [Google Scholar]
  • Louis MJ. 1933. L’origine botanique du copal. Bulletin Agricole du Congo Belge 19: 838–839. [Google Scholar]
  • Lourenço WR. 1996. Premier cas connu d’un sub-fossile de scorpion dans le copal de Madagascar. Comptes Rendus de l’Académie des Sciences, Paris, série IIa 323: 889–891. [Google Scholar]
  • Mantell CL. 1950. The natural hard resins: their botany, sources and utilization. Economic Botany 4(3): 203–242. [CrossRef] [Google Scholar]
  • Mays C, Coward AJ, O’Dell LA, Tappert R. 2019. The botanical provenance and taphonomy of Late Cretaceous Chatham amber, Chatham Islands, New Zealand. Review of Palaeobotany and Palynology 260: 16–26. https://doi.org/10.1016/j.revpalbo.2018.08.004. [CrossRef] [Google Scholar]
  • Mazur N, Nagel M, Leppin U, Bierbaum G, Rust J. 2014. The extraction of fossil arthropods from Lower Eocene Cambay amber. Acta Palaeontologica Polonica 59: 455–459. https://doi.org/10.4202/app.2012.0018. [Google Scholar]
  • McCoy VE, Boom A, Solórzano Kraemer MM, Gabbott SE. 2017. The chemistry of American and African amber, copal, and resin from the genus Hymenaea. Organic Geochemistry 113: 43–54. https://doi.org/10.1016/j.orggeochem.2017.08.005. [CrossRef] [Google Scholar]
  • Mertens E. 1933. Recherches sur le copal du Congo. Bulletin des séances – Institut Royal Colonial Belge 4: 268–291. [Google Scholar]
  • Meunier F. 1900a. Sur les Mymaridae de l’ambre et du copal (Hymén.). Bulletin de la Société Entomologique de France 1900: 364–367. [Google Scholar]
  • Meunier F. 1900b. Sur quelques Mymaridae du copal fossile. Bulletin de la Société Entomologique de France 1900: 192–195. [Google Scholar]
  • Meunier F. 1905. Sur quelques diptères et un hyménoptère du copal récent de Madagascar. Miscellanea Entomologica 13: 90–94. [Google Scholar]
  • Meunier F. 1906. Sur quelques insectes (Diptères, Hyménoptères, Névroptères, Orthoptères) du copal fossile, sub-fossile et récent de Zanzibar et du copal récent d’Accra, du Togo et de Madagascar. Annales de la Société Scientifique de Bruxelles 30: 211–213. [Google Scholar]
  • Meunier F. 1909. Quelques considérations sur la faune d’insectes du copal fossile de Zanzibar, du copal récent d’Accra, de Zanzibar et de Madagascar. Annales de la Société Scientifique de Bruxelles 33: 141–142. [Google Scholar]
  • Meunier F. 1910a. Contribution à la faune des diptères du copal récent de Zanzibar, de Madagascar et d’Accra. Annales de la Société Scientifique de Bruxelles 34: 5–13. [Google Scholar]
  • Meunier F. 1910b. Contribution à la faune des Phoridae du copal subfossile de Zanzibar, du copal récent de Zanzibar, Accra et de Madagascar. Annales de la Société Scientifique de Bruxelles 34: 144–145. [Google Scholar]
  • Meunier F. 1910c. Contribution à la faune des Phoridae du copal subfossile de Zanzibar, récent de Zanzibar, de Madagascar et d’Accra. Le Naturaliste 32: 18–20. [Google Scholar]
  • Meunier F. 1910d. Un Coniopterygidae du copal récent du Togo (Afrique). Bulletin de la Société Entomologique de France 1910: 119–120. [CrossRef] [Google Scholar]
  • Meunier F. 1917. Note complémentaire concernant Styringomyia venusta Loew du copal récent de Zanzibar. Tijdschrift voor Entomologie 60: 370–375. [Google Scholar]
  • Narudeesombat N, Ounorn P, Bupparenoo P, Christopherse A, Pisutha-Arnond V, Sutthirat C. 2014. Update on the characteristics of amber from Indonesia. Proceedings of the 4th International Gem and Jewelry Conference (GIT 2014), Thailand 271–276. [Google Scholar]
  • Nohra YA, Perrichot V, Jeanneau L, Le Pollès L, Azar D. 2015. Chemical characterization and botanical origin of French ambers. Journal of Natural Products 78: 1284–1293. https://doi.org/10.1021/acs.jnatprod.5b00093. [CrossRef] [Google Scholar]
  • Nunberg M. 1959. Eine fossile Kernkäfer-Art aus der Gattung Periommatus Chap. (Platypodidae). Annales Zoologici 18: 127–138. [Google Scholar]
  • Penney DA. 2016. Sub/fossil resin research in the 21st Century: Trends and perspectives. Paläontologische Zeitschrift 90: 425–447. [CrossRef] [Google Scholar]
  • Pereira R, San Gil RAS, Carvalho IS, Fernandes ACS, Azevedo DA. 2011. Solid state 13C NMR analysis of Brazilian Cretaceous ambers. Journal of Brazilian Chemical Society 22: 92–97. [CrossRef] [Google Scholar]
  • Pérez LM, Panera JPP, Aguilera OA, Ronchi DI, Sánchez R, Manceñido MO, et al. 2016. Palaeontology, sedimentology, and biostratigraphy of a fossiliferous outcrop of the Early Miocene Querales Formation, Falcón Basin, Venezuela. Swiss Journal of Palaeontology 135: 187–203. [CrossRef] [Google Scholar]
  • Perrichot V, Boudinot BE, Cole J, Delhaye-Prat V, Esnault J, Goldman Y, et al. African fossiliferous amber: A review. In: Penney D, Ross AJ, Eds. Abstract book of the 7th international conference on fossil insects, arthropods and amber. Manchester, UK: Siri Scientific Press, 2016, p. 41. [Google Scholar]
  • Perrichot V, Boudinot B, Chény C, Cole J, Jeanneau L, Schmidt AR, 2018. The age and paleobiota of Ethiopian amber revisited. In: 5th International Paleontological Congress, Paris, France. Abstract book: 23. [Google Scholar]
  • Poinar G Jr. 1992. Life in amber. Stanford: Stanford University Press. [Google Scholar]
  • Poinar G Jr. 2019. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Historical Biology 31: 1304–1309. https://doi.org/10.1080/08912963.2018.1446531. [Google Scholar]
  • Pynaert L. 1924. Le copal et son exploitation au Congo belge. Bulletin Agricole du Congo Belge 15(2): 334–359. [Google Scholar]
  • Quedenfeldt G. 1885. Copal-Insekten aus Africa. Berliner Entomologische Zeitschrift 29: 363–365. [CrossRef] [Google Scholar]
  • Rao VR, Kumaran KPN. 1988. A short survey of palaeobotanic studies (Cretaceous and Tertiary) in Nigeria. Review of Palaeobotany and Palynology 54: 151–158. [CrossRef] [Google Scholar]
  • Rackwitz H. 1907. Über die westafrikanische Copale, speziell den Angola-Copal (rot) und Kamerun-Copal. Archiv der Pharmazie 245: 415–426. [CrossRef] [Google Scholar]
  • Rasnitsyn AP, Öhm-Kühnle C. 2018. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): unexpected diversity of paradoxical wasps suggests insular features of source biome. Cretaceous Research 91: 168–175. https://doi.org/10.1016/j.cretres.2018.06.004. [CrossRef] [Google Scholar]
  • Rosen K. von. 1913. Die fossilen Termiten: eine kurze Zusammenfassung der bis jetzt bekannten Funde. Transactions of the 2nd International Congress of Entomology, pp. 318–335. [Google Scholar]
  • Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, et al. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences of the USA 107: 18360–18365. https://doi.org/10.1073/pnas.1007407107. [CrossRef] [Google Scholar]
  • Savkevitch SS, Arua I. 1990. Amekit, a new fossil resin from Nigeria. Prace Muzeum Ziemi 41: 156. [Google Scholar]
  • Schlüter T, von Gnielinski F. 1987. The East African copal – Its geologic, stratigraphic, palaeontologic significance and comparison with other fossil resins of similar age. National Museums of Tanzania Occasional Paper 8: 1–32. [Google Scholar]
  • Schmidt C. 2013. Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa 3647: 201–250. [CrossRef] [Google Scholar]
  • Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, et al. 2010a. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the USA 107: 7329–7334. https://doi.org/10.1073/pnas.1000948107. [CrossRef] [Google Scholar]
  • Schmidt AR, Dörfelt H, Struwe S, Perrichot V. 2010b. Evidence for fungivory in Cretaceous amber forests from Gondwana and Laurasia. Palaeontographica B 283: 157–173. [CrossRef] [Google Scholar]
  • Schmidt AR, Kaulfuss U, Bannister JM, Baranov V, Beimforde C, Bleile N, et al. 2018. Amber inclusions from New Zealand. Gondwana Research 56: 135–146. https://doi.org/10.1016/j.gr.2017.12.003. [CrossRef] [Google Scholar]
  • Selden PA, Anderson HM, Anderson JM. 2009. A review of the fossil record of spiders (Araneae) with special reference to Africa, and description of a new specimen from the Triassic Molteno Formation of South Africa. African Invertebrates 50: 105–116. [CrossRef] [Google Scholar]
  • Seyfullah LJ, Beimforde C, Dal Corso J, Perrichot V, Rikkinen J, Schmidt AR. 2018. Production and preservation of resins – Past and present. Biological Reviews 93: 1684–1714. https://doi.org/10.1111/brv.12414. [CrossRef] [Google Scholar]
  • Sonibare OO, Agbaje OB, Jacob DE, Faithfull J, Hoffmann T, Foley SF. 2014. Terpenoid composition and origin of amber from the Cape York Peninsula, Australia. Australian Journal of Earth Sciences 61: 979–985. https://doi.org/10.1080/08120099.2014.960897. [CrossRef] [Google Scholar]
  • Sonibare OO, Hoffmann T, Foley SF. 2012. Molecular composition and chemotaxonomic aspects of Eocene amber from the Ameki Formation, Nigeria. Organic Geochemistry 51: 55–62. https://doi.org/10.1016/j.orggeochem.2012.08.003. [CrossRef] [Google Scholar]
  • Stilwell JD, Langendam A, Mays C, Sutherland LJM, Arillo A, Bickel D., et al. 2020. Amber from the Triassic to Paleogene of Australia and New Zealand as exceptional preservation of poorly known terrestrial ecosystems. Scientific Reports 10: 5703. https://doi.org/10.1038/s41598-020-62252-z. [CrossRef] [Google Scholar]
  • Stroiński A. 2007. Pochazoides szwedoi n. sp. from the East African copal (Hemiptera: Fulgoromorpha: Ricaniidae). Genus 18: 345–349. [Google Scholar]
  • Stroiński A, Szwedo J. 2002. An overview of Fulgoromorpha and Cicadomorpha in East African copal (Hemiptera). Denisia 4: 57–66. [Google Scholar]
  • Stroiński A, Szwedo J. 2011. Yuripopoverus africanus gen. et sp. n. from East African copal (Hemiptera: Fulgoromorpha: Ricaniidae). Polish Journal of Entomology 80: 679–688. https://doi.org/10.2478/v10200-011-0052-x. [CrossRef] [Google Scholar]
  • Sunseri T. 2007. The political ecology of the copal trade in the Tanzanian coastal hinterland, c. 1820–1905. Journal of African History 48: 201–220. [CrossRef] [Google Scholar]
  • Vávra N. 2009. Amber, fossil resins, and copal – Contributions to the terminology of fossil plant resins. Denisia 26: 213–222. [Google Scholar]
  • Vervloet G. 1932. Le copal du Congo. Paris : Pelissier & Frey. [Google Scholar]
  • Ward PS, Brady SG, Fisher BL, Schultz TR. 2010. Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Systematic Biology 59: 342–362. https://doi.org/10.1093/sysbio/syq012. [CrossRef] [Google Scholar]
  • Westerweel J, Roperch P, Licht A, Dupont-Nivet G, Win Z, Poblete F, et al. 2019. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nature Geoscience 12: 863–868. https://doi.org/10.1038/s41561-019-0443-2. [CrossRef] [Google Scholar]
  • Wilson RC. 1925. The geology of the eastern railway section Port Harcourt to Enugu. Geological Survey Nigeria Bulletin 8: 1–95. [Google Scholar]
  • Wunderlich J. 2004. Fossil spiders in amber and copal: Introduction, general findings and conclusions. Beiträge zur Araneologie 3: 1–329. [Google Scholar]
  • Wunderlich J. 2008. Fossil and extant spiders (Araneae) – Phylogeny, diversifications, extinctions, biogeography, ecology and ethology; with descriptions of new fossils and extant taxa. Beiträge zur Araneologie 5: 1–890. [Google Scholar]
  • Zeuner FE, Manning FJ. 1976. A monograph on fossil bees (Hymenoptera: Apoidea). Bulletin of the British Museum of Natural History (Geology) 27: 151–268. [Google Scholar]
  • Zimmerman A. 1908. Der ostafrikanische Copalbaum (Trachylobium verrucosum). Der Pflanzer 4: 17–23. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.