Numéro
BSGF - Earth Sci. Bull.
Volume 191, 2020
Special Issue L’Ambre
Numéro d'article 39
Nombre de pages 19
DOI https://doi.org/10.1051/bsgf/2020039
Publié en ligne 17 décembre 2020
  • Abbink OA. 1998. Palynological investigations in the Jurassic of the North Sea region. In: LPP Contribution Series 8. Utrecht: University of Utrecht, 192 p. [Google Scholar]
  • Abbink OA, Van Konijnenburg-Van Cittert JHA, Visscher H. 2004. A sporomorph ecogroup model for the Northwest European Jurassic-Lower Cretaceous: concept and framework. Netherlands Journal of Geosciences 83: 17–38. [CrossRef] [Google Scholar]
  • Aimin F, Xiaohan L, Weiming W, Xiaoli L, Liangjun Y, Feixin H. 2005. Preliminary study on the spore-pollen assemblages found in the Cenozoic sedimentary rocks in Grove Mountains, east Antarctica and its climatic implications. Chinese Journal of Polar Sciences 16: 23–32. [Google Scholar]
  • Alvin KL. 1982. Cheirolepidiaceae: biology, structure and paleoecology. Review of Palaeobotany and Palynology 37: 71–98. [CrossRef] [Google Scholar]
  • Anderson KB. 1994. The nature and fate of natural resins in the geosphere—IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia—evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Organic Geochemistry 21(2): 209–212. https://doi.org/10.1016/0146-6380(94)90155-4. [CrossRef] [Google Scholar]
  • Anderson KB. 1996. New evidence concerning the structure, composition, and maturation of class I (Polylabdanoid) resinites. In: Amber, Resinite, and Fossil Resins. American Chemical Society 617: 105–129. [Google Scholar]
  • Anderson KB. 2006. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS. Geochemical Transactions 7(2). https://doi.org/10.1186/1467-4866-7-2. [CrossRef] [Google Scholar]
  • Antoine P-O, De Franceschi D, Flynn JJ, Nel A, Baby P, Benammi M, et al. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences 103: 13595–13600. [CrossRef] [Google Scholar]
  • Archangelsky S, Archangelsky A. 2005. Aequitriradites Delcourt & Sprumont y Couperisporites Pocock, esporas de hepaticas, en el Cretacico Temprano de Paragonia, Argentina. Revista del Museo Argentino de Ciencias Naturales 7: 119–138. [CrossRef] [Google Scholar]
  • Arnold V. 1998. Vergessene Einschlüsse-Blütenstaub in baltischem Bernstein. Mitteilungen aus dem Geologisch-Paläontologischen Institut. Univ. Hamburg 81: 269–282. [Google Scholar]
  • Azar D, Gèze R, Acra F. 2010. Lebanese amber. In: Penney D, ed. Biodiversity of fossils in amber from the major world deposits. Manchester (UK): Siri Scientific Press, pp. 271–298. [Google Scholar]
  • Azema C, Durand S, Medus J. 1972. Des miospores du Cénomanien moyen. Paléobiologie continentale, Montpellier, France 3: 1–54. [Google Scholar]
  • Balme BE. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87: 81–323. [CrossRef] [Google Scholar]
  • Batten DJ. 1974. Wealden palaeoecology from the distribution of plant fossils. Proceedings of the Geologists’ Association 85: 433–457. [CrossRef] [Google Scholar]
  • Batten DJ, Dutta RJ. 1997. Ultrastructure of exine of gymnospermous pollen grains from Jurassic and basal Cretaceous deposits in Northwest Europe and implications for botanical relationships. Review of Palaeobotany and Palynology 99: 25–54. [CrossRef] [Google Scholar]
  • Bray PS, Anderson KB. 2008. The nature and fate of natural resins in the geosphere XIII: a probable pinaceous resin from the early Cretaceous (Barremian), Isle of Wight. Geochemical Transactions 9(3). https://doi.org/10.1186/1467-4866-9-3. [Google Scholar]
  • Breton G. 2007. La bioaccumulation de microorganismes dans l’ambre : analyse comparée d’un ambre cénomanien et d’un ambre sparnacien, et de leurs tapis algaires et bactériens. Comptes Rendus Palevol 6: 125–133. [CrossRef] [Google Scholar]
  • Breton G, Gauthier C, Vizcaïno D. 1999. Land and freshwater microflora in a Sparnacian amber from the Corbières (South France): first observations. Estudios del Museo de Ciencias Naturales de Álava 14: 161–166. [Google Scholar]
  • Breton G, Bilote M, Eychenne G. 2013. L’ambre campanien du Mas d’Azil (Ariège, France) : gisement, microinclusions, taphonomie. Annales de paléontologie 99: 317–337. [CrossRef] [Google Scholar]
  • Breton G, Champion S, Bilotte M. 2018. L’ambre turonien du ruisseau des Tarquès (Commune de Duilhac-sous-Peyrepertuse, Aude, France). Bulletin de la Société d’Histoire Naturelle de Toulouse 154: 161–176. [Google Scholar]
  • Breton G, Tostain F. 2005. Les microorganismes de l’ambre cénomanien d’Ecommoy (Sarthe, France). Comptes Rendus Palevol 4: 31–46. [CrossRef] [Google Scholar]
  • Cai C, Escolana HE, Li L, Yin Z, Huang D, Engel MS. 2018. Beetle Pollination of Cycads in the Mesozoic. Current Biology 28: 2806–2812. [CrossRef] [Google Scholar]
  • Clifford DJ, Carson DM, McKinney DE, Bortiatynski JM, Hatcher PG. 1995. A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH). Organic Geochemistry 23(2): 169–175. https://doi.org/10.1016/0146-6380(94)00109-E. [CrossRef] [Google Scholar]
  • Clifford DJ, Hatcher PG, Botto RE, Muntean JV, Anderson KB. 1999. The nature and fate of natural resins in the geosphere. IX Structure and maturation similarities of soluble and insoluble polylabdanoids isolated from Tertiary Class I resinites. Organic Geochemistry 30(7): 635–650. https://doi.org/10.1016/S0146-6380(99)00018-2. [CrossRef] [Google Scholar]
  • Coiffard C, Gomez B, Thévenard F. 2007. Early Cretaceous angiosperm invasion of Western Europe and major environmental changes. Annals of Botany 100: 545–553. [CrossRef] [Google Scholar]
  • Collectif. 2010. Histoire géologique de la Mayenne. Épisode 5 : Mésozoïque. Éditions Errance, pp. 245–248. [Google Scholar]
  • Couper RA. 1958. British Mesozoic microspores and pollen grains: a systematic and stratigraphic study. Palaeontographica Abteilung B 103: 75–179. [Google Scholar]
  • De Franceschi D, Dejax J, De Ploëg G. 2000. Extraction du pollen inclus dans l’ambre [Sparnacien du Quesnoy (Oise), bassin de Paris] : vers une nouvelle spécialité de la paléo-palynologie. Comptes rendus de l’Académie des sciences, de la terre et des planètes 330: 227–233. [Google Scholar]
  • Deák MH, Combaz A. 1967. « Microfossiles organiques » du Wealdien et du Cénomanien dans un sondage de Charente-Maritime. Revue de micropaléontologie 10: 69–96. [Google Scholar]
  • Dejax J, De Franceschi D, Lugardon B, De Ploëg G, Arnold V. 2001. Le contenu cellulaire du pollen fossilisé dans l’ambre, préservé à l’état organique. Comptes rendus de l’Académie des sciences, de la terre et des planètes 332: 339–344. [Google Scholar]
  • Dettmann ME. 1963. Upper Mesozoic microfloras from south-eastern Australia. Proceedings of the Royal Society of Victoria 77: 1–149. [Google Scholar]
  • Dettmann ME, Clifford HT. 1991. Spore morphology of Anemia, Mohria, and Ceratopteris (Filicales). American Journal of Botany 78: 303–325. [CrossRef] [Google Scholar]
  • Doyle JA, Robbins EI. 1977. Angiosperm pollen zonation of the continental Cretaceous of the Atlantic coastal plain and its application to deep wells in the Salisbury Embayment. Palynology 1: 43–78. [CrossRef] [Google Scholar]
  • Doyle JA, Endress PK. 2018. Phylogenetic analyses of Cretaceous fossils related to Chloranthaceae and their evolutionary implications. The Botanical Review 84: 156–202. [CrossRef] [Google Scholar]
  • Durand S, Louail J. 1971. Découverte d’un dépôt cénomanien fossilifère à Neau (Mayenne). Comptes rendus de l’Académie des sciences de Paris 273: 1179–1181. [Google Scholar]
  • Dutta S, Mallick M, Kumar K, Mann U, Greenwood PF. 2011. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar. International Journal of Coal Geology 85(1): 49–55. https://doi.org/10.1016/j.coal.2010.09.006. [CrossRef] [Google Scholar]
  • Engel MS, Ortega-Blanco J, Azar D. 2011. The earliest earwigs in amber (Dermaptera): a new genus and species from the Early Cretaceous of Lebanon. Insect Systematics and Evolution 42: 139–148. [CrossRef] [Google Scholar]
  • Fensome RA. 1987. Taxonomy and biostratigraphy of schizaealean spores from the Jurassic-Cretaceous boundary beds of the Aklavik Range, District of Mackenzie. Palaeontographica Canadiana 4: 1–49. [Google Scholar]
  • Filatoff J. 1975. Jurassic palynology of the Perth Basin, Western Australia. Palaeontographica Abteilung B 154: 1–113. [Google Scholar]
  • Fleury R, Polette F, Batten DJ, Durand M, Moreau J-D, Néraudeau D, et al. 2017. Palaeobotanical investigation of a Cenomanian clay lens in Hucheloup quarry, Maine-et-Loire, NW France: taxonomic, stratigraphic and palaeoenvironmental implications. Annales de paléontologie 103: 235–250. [CrossRef] [Google Scholar]
  • Gingras MK, Maceacher JA, Picherill RK. 2004. Modern perspectives on Teredolites Ichnofacies: observations from Willapa Bay, Washington. Palaios 19: 79–98. [CrossRef] [Google Scholar]
  • Girard V. 2010. Microcénoses des ambres médio-crétacés français. Taphonomie, systématique, paléoécologie et reconstitution du paléoenvironnement. Mémoires Geosciences Rennes 134: 1–294. [Google Scholar]
  • Girard V, Néraudeau D, Breton G, Morel N. 2013a. Palaeoecology of the Cenomanian amber forest of Sarthe (western France). Geologica Acta 11: 321–330. [Google Scholar]
  • Girard V, Breton G, Perrichot V, Bilotte M, Le Loeuff J, Nel A, et al. 2013b. The Cenomanian amber of Fourtou (Aude, Southern France): Taphonomy and palaeoecological implications. Annales de paléontologie 99: 301–315. [CrossRef] [Google Scholar]
  • Gomez B, Martín-Closas C, Barale G, Thévenard F. 2000. A new species of Nehvizdya (Ginkgoales) from the Lower Cretaceous of the Iberian Ranges (Spain). Review of Palaeobotany and Palynology 111: 49–70. [CrossRef] [Google Scholar]
  • Gomez B, Daviero-Gomez V, Perrichot V, Thévenard F, Coiffard C, Philippe M, et al. 2004. Assemblages floristiques de l’Albien-Cénomanien de Charente-Maritime (SO France). Annales de paléontologie 90: 147–159. [CrossRef] [Google Scholar]
  • Gomez B, Coiffard C, Dépré E, Daviero-Gomez V, Néraudeau D. 2008. Diversity and histology of a plant litter bed from the Cenomanian of Archingeay-Les Nouillers (southwestern France). Comptes Rendus Palevol 7: 135–144. [CrossRef] [Google Scholar]
  • Grimaldi DA, Peñalver E, Barrón E, Herhold HW, Engel MS. 2019. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Communications Biology 2: 1–10. [CrossRef] [Google Scholar]
  • Groot JJ, Groot CR. 1962. Plant microfossils from Aptian, Albian and Cenomanian deposits of Portugal. Comunicações dos Serviços Geológicos de Portugal 46: 133–176. [Google Scholar]
  • Heimhofer U, Hochuli PA, Burla S, Weissart H. 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: Implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144: 39–76. [CrossRef] [Google Scholar]
  • Hinkelman J, Vršanská L. 2020. A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis. The Science of Nature 107: 19 p. (in press). [CrossRef] [Google Scholar]
  • Hochuli PA, Heimhofer U, Weissert H. 2006. Timing of early angiosperm radiation: recalibrating the classical succession. Journal of the Geological Society, London 163: 587–594. [CrossRef] [Google Scholar]
  • Jansonius J, Hills LV. 1976. Genera File of Fossil Spores and Pollen. 3287 cards. Special Publication. Calgary, Canada: Department of Geology, University of Calgary. [Google Scholar]
  • Jiang Z, Philippe M, Zhang W, Tian N, Zheng S. 2016. A Jurassic wood that provides insights into the earliest steps in Ginkgo wood evolution. Scientific Reports 6: 38191. https://doi.org/10.1038/srep38191. [CrossRef] [Google Scholar]
  • Kramer KU, Green PS. 1990. The families and genera of vascular plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag, 404 p. [Google Scholar]
  • Kujau A, Heimhofer U, Hochuli PA, Pauly S, Morales C, Adatte T, et al. 2013. Reconstructing Valanginian (Early Cretaceous) mid-latitude vegetation and climate dynamics based on spore–pollen assemblages. Review of Palaeobotany and Palynology 197: 50–69. [CrossRef] [Google Scholar]
  • Kvaček J. 1999. New data and revision of three gymnosperms from the Cenomanian of Bohemia–Sagenopteris variabilis (Velenovský) Velenovský, Mesenea bohemica (Corda) comb. n. and Eretmophyllum obtusum (Velenovský) comb. n. Acta Musei Nationalis Pragae, Series B, Historia Naturalis 55: 15–24. [Google Scholar]
  • Kvaček J. 2000. Frenelopsis alata and its microsporangiate and ovuliferous reproductive structures from the Cenomanian of Bohemia (Czech Republic, Central Europe). Review of Palaeobotany and Palynology 112: 51–78. [CrossRef] [Google Scholar]
  • Kvaček J, Falcon-Lang HJ, Dašková J. 2005. A new Late Cretaceous ginkgoalean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and its whole-plant reconstruction. American Journal of Botany 92: 1958–1969. [CrossRef] [Google Scholar]
  • Kvaček J, Doyle P, Endress PK, Daviero-Gomez V, Gomez B, Tekleva M. 2016. Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a possible link between Chloranthaceae and Ceratophyllum. Taxon 65: 1345–1373. [CrossRef] [Google Scholar]
  • Langenheim JH, Bartlett A. 1971. Interpretation of pollen in amber from a study of pollen in present-day coniferous resin. Bulletin of the Torrey Botanical Club 98: 127–139. [CrossRef] [Google Scholar]
  • Langenheim JH. 2003. Plant resins: chemistry, evolution, ecology, and ethnobotany. Portland, Oregon, USA: Timber Press. [Google Scholar]
  • Lin X, Labandeira CC, Shih C, Hotton CL, Ren D. 2019. Life habits and evolutionary biology of new two-winged long-proboscid scorpion flies from mid-Cretaceous Myanmar amber. Nature Communications 10: 1–14. [Google Scholar]
  • Lupia R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25: 1–28. [CrossRef] [Google Scholar]
  • May F. 1975. Dichastopollennites reticulatus, gen. et sp. nov.: potential Cenomanian Guide Fossil from Soutjern Utah and Northeastern Arizona. Journal of Paleontology 49: 528–533. [Google Scholar]
  • Médus J. 1970. Contribution à la classification des grains de pollen du groupe des Circumpolles (Pflug) Klaus. Pollen et Spores 12: 205–216. [Google Scholar]
  • Médus J, Triat J-M. 1969. Le Cénomanien supérieur de la coupe de Laudun (Gard, France) : étude palynologique et données sédimentologiques. Review of Palaeobotany and Palynology 9: 213–228. [CrossRef] [Google Scholar]
  • Mehltreter K, Walker LR, Sharpe JM. 2012. Fern ecology. Cambridge: Cambridge University Press. [Google Scholar]
  • Menor-Salván C, Simoneit BRT, Ruiz-Bermejo M, Alonso J. 2016. The molecular composition of Cretaceous ambers: Identification and chemosystematic relevance of 1,6-dimethyl-5-alkyltetralins and related bisnorlabdane biomarkers. Organic Geochemistry 93: 7–21. https://doi.org/10.1016/j.orggeochem.2015.12.010. [CrossRef] [Google Scholar]
  • Méon H, Guignard G, Pacltová B, Svobodova M. 2004. Normapolles. Comparaison entre l’Europe centrale et du Sud-Est pendant le Cénomanien et le Turonien : évolution de la biodiversité et paléoenvironnement. Bulletin de la Société géologique de France 175: 579–594. [CrossRef] [Google Scholar]
  • Moreau J-D, Néraudeau D, Gomez B, Tafforeau P, Dépré E. 2014. Plant inclusions from the Cenomanian flints of Archingeay-Les Nouillers, western France. Lethaia 47: 313–322. [CrossRef] [Google Scholar]
  • Moreau J-D, Néraudeau D, Philippe M, Dépré E. 2017. Albian flora from Archingeay-Les Nouillers (Charente-Maritime): comparison and synthesis of Cretaceous meso- and macro-remains from the Aquitaine Basin (southwestern France). Geodiversitas 39: 729–740. [CrossRef] [Google Scholar]
  • Néraudeau D, Perrichot V, Dejax J, Masure E, Nel A, Philippe M, et al. 2002. Un nouveau gisement à ambre insectifère et à végétaux (Albien terminal probable) : Archingeay (Charente-Maritime, France). Geobios 35: 233–240. [CrossRef] [Google Scholar]
  • Néraudeau D, Allain R, Perrichot V, Videt B, De Broin F, Guillocheau F, et al. 2003. Découverte d’un dépôt paralique à bois fossiles, ambre insectifère et restes d’Iguanodontidae (Dinosauria, Ornithopoda) dans le Cénomanien inférieur de Fouras (Charente-Maritime, sud-ouest de la France). Comptes Rendus Palevol 2: 221–230. [CrossRef] [Google Scholar]
  • Néraudeau D, Vullo R, Gomez B, Perrichot V, Videt B. 2005. Stratigraphie et paléontologie (plantes, vertébrés) de la série margino-littorale Albien terminal − Cénomanien basal de Tonnay-Charente (Charente-Maritime, France). Comptes Rendus Palevol 4: 79–93. [CrossRef] [Google Scholar]
  • Néraudeau D, Perrichot V, Colin J-P, Girard V, Gomez B, Guillocheau F, et al. 2008. A new amber deposit from the Cretaceous (uppermost Albian-lowermost Cenomanian) of SW France. Cretaceous Research 29: 925–929. [CrossRef] [Google Scholar]
  • Néraudeau D, Vullo R, Gomez B, Girard V, Lak M, Videt B, et al. 2009. Amber, plant and vertebrate fossils from the Lower Cenomanian paralic facies of Aix Island (Charente-Maritime, SW France). Geodiversitas 31: 13–28. [CrossRef] [Google Scholar]
  • Néraudeau D, Redois F, Ballèvre M, Duplessis B, Girard V, Gomez B, et al. 2013. L’ambre cénomanien d’Anjou: stratigraphie et paléontologie des carrières du Brouillard et de Hucheloup (Ecouflant, Maine-et-Loire). Annales de paléontologie 99: 361–374. https://doi.org/10.1016/j.annpal.2013.10.001. [CrossRef] [Google Scholar]
  • Néraudeau D, Saint Martin S, Batten DJ, Colin J-P, Daviero-Gomez V, Girard V, et al. 2016. Palaeontology of the upper Turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France. Geologica Acta 14: 53–69. [Google Scholar]
  • Néraudeau D, Perrichot V, Batten D, Boura A, Girard V, Jeannau L, et al. 2017. Upper Cretaceous amber from Vendée, north-western France: Age dating and geological, chemical, and palaeontological characteristics. Cretaceous Research 70: 77–95. [CrossRef] [Google Scholar]
  • Nohra YA, Perrichot V, Jeanneau L, Le Pollès L, Azar D. 2015. Chemical characterization and botanical origin of French Ambers. Journal of Natural Products 78(6): 1284–1293. https://doi.org/10.1021/acs.jnatprod.5b00093. [CrossRef] [Google Scholar]
  • Otto A, Simoneit BRT. 2002. Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Organic Geochemistry 33(11): 1241–1251. https://doi.org/10.1016/S0146-6380(02)00139-0. [CrossRef] [Google Scholar]
  • Peris D, Pérez-de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC. 2017. False Blister Beetles and the expansion of gymnosperm-insect pollination modes before Angiosperm dominance. Current Biology 27: 1–8. [CrossRef] [Google Scholar]
  • Perrichot V. 2005. Environnements paraliques à ambre et végétaux du Crétacé Nord-Aquitain (Charentes, Sud-Ouest de la France). Mémoires Géosciences Rennes 118: 1–310. [Google Scholar]
  • Peyrot D, Barrón E, Polette F, Batten DJ, Néraudeau D. 2019. Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Research 94: 168–189. [CrossRef] [Google Scholar]
  • Philippe M. 1995. Bois fossiles du Jurassique de Franche-Comté (nord-est de la France) : systématique et biogéographie. Palaeontographica Abteilung B 236(1/3): 45–103. [Google Scholar]
  • Philippe M, Bamford M. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology 148: 184–207. [CrossRef] [Google Scholar]
  • Pocock SAJ. 1972. Palynology of the Jurassic sediments of Western Canada. Part 2. Marine species. Palaeontographica Abteilung B 137: 85–153. [Google Scholar]
  • Poinar GO Jr. 1992. Life in amber. Stanford University Press, 368 p. [Google Scholar]
  • Poinar GO Jr. 2010. Cascoplecia insolitis (Diptera: Cascopleciidae), a new family, genus, and species of flower-visiting, unicorn fly (Bibionomorpha) in Early Cretaceous Burmese amber. Cretaceous Research 31: 71–76. [CrossRef] [Google Scholar]
  • Polette F. 2019. Les assemblages palynologiques continentaux du Crétacé inférieur de France (Tithonien-Cénomanien) : paléoenvironnements, paléoclimats, stratigraphie, et taxinomie. Thèse, université de Rennes, 2 tomes, 592 p. (inédit). [Google Scholar]
  • Polette F, Licht A, Cincotta A, Batten DJ, Depuydt P, Néraudeau D, et al. 2019. Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan Ormeau-Saint-Denis (Vienne, western France): stratigraphic and paleoenvironmental implications. Review of Palaeobotany and Palynology 271: 1–21. [CrossRef] [Google Scholar]
  • Pons D, Boureau E, Broutin J. 1976. Nouvelles études paléobotaniques des environs d’Angers I. Eretmophyllum andegavense nov. sp., ginkgoale fossile du Cénomanien. In: Comptes rendus du 97e Congrès national des Sociétés savantes. Section Sciences, Nantes, pp. 367–369. [Google Scholar]
  • Pons D. 1979. Les organes reproducteurs de Frenelopsis alata (K. Feistm) Knobloch, Cheirolepidiaceae du Cénomanien de l’Anjou, France. In: Comptes rendus du 104e Congrès national des Société savantes. Section Sciences, Bordeaux, pp. 209–231. [Google Scholar]
  • Proctor MCF, Tuba Z. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327–349. [CrossRef] [Google Scholar]
  • Rasband WS. 1997–2013. ImageJ. Bethesda, Maryland, USA: U.S. National Institutes of Health. http://rsb.info.nih.gov/ij/. [Google Scholar]
  • Ravn RL. 1995. Miospores from the muddy sandstone (upper Albian), wind river basin, Wyoming, USA. Palaeontographica Abteilung B 234: 41–91. [Google Scholar]
  • Ravn RL, Witzke BJ. 1995. The palynostratigraphy of the Dakota Formation (?Late Albian-Cenomanian) in its type area, northwestern Iowa and northeastern Nebraska, USA. Palaeontographica Abteilung B 234: 93–171. [Google Scholar]
  • Redois F, Durand M, Fleury R, Mellier B, Moreau J-D, Néraudeau D, et al. 2016. Les argiles ligniteuses du Cénomanien de Hucheloup (Ecouflant, Maine-et-Loire). In: Colloque du Groupe français du Crétacé, Musée Vert, avril 2016, Le Mans, pp. 75–76. [Google Scholar]
  • Rusea G, Claysius K, Runi S, Joanes U, Haja Maideen KM, Latiff A. 2009. Ecology and distribution of Lycopodiaceae Mirbel in Malaysia. Blumea 54: 269–271. [CrossRef] [Google Scholar]
  • Saint Martin J-P, Saint Martin S. 2018. Exquisite preservation of a widespread filamentous microorganism from French Cretaceous ambers: a key for review of controversial fossil. Comptes Rendus Palevol 17: 415–434. [CrossRef] [Google Scholar]
  • Saint Martin S, Saint Martin J-P, Girard V, Grosheny D, Néraudeau D. 2012. Filamentous micro-organisms in Upper Cretaceous amber (Martigues, France). Cretaceous Research 35: 217–229. [CrossRef] [Google Scholar]
  • Saint Martin S, Saint Martin J-P, Girard V, Néraudeau D. 2013a. Organismes filamenteux de l’ambre du Santonien de Belcodène (Bouches-du-Rhône, France). Annales de paléontologie 99: 339–360. [CrossRef] [Google Scholar]
  • Saint Martin J-P, Saint Martin S, Néraudeau D. 2013b. L’ambre associé aux lignites cénomaniens du Sarladais (Dordogne, SO France). Annales de paléontologie 99: 289–300. [CrossRef] [Google Scholar]
  • Samuel E, Gaillard MG. 1984. Les gisements à flore fossile d’âge Crétacé supérieur en France : localisation, stratigraphie et essai de corrélations des données macro- et microfloristiques. Bulletin mensuel de la Société linnéenne de Lyon 53e année 6: 213–223. [Google Scholar]
  • Schmidt AR, Schäfer U. 2005. Leptotrichites resinatus new genus and species: a fossil sheathed bacterium in Alpine Cretaceous amber. Journal of Paleontology 79: 175–184. [CrossRef] [Google Scholar]
  • Schrank E. 2010. Pollen and spores from the Tendagru Beds, Upper Jurassic and Lower Cretaceous of southeast Tanzania: palynostratigraphical and paleoecological implications. Palynology 34: 3–42. [CrossRef] [Google Scholar]
  • Singh C. 1971. Lower Cretaceous microfloras of the Peace River area, Northwestern Alberta. Bulletin of the Research Council of Alberta Bulletin 28: 1–522. [Google Scholar]
  • Singh C. 1983. Cenomanian microfloras of the Peace River area Northwestern Alberta. Bulletin of the Research Council of Alberta Bulletin 44: 1–322. [Google Scholar]
  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schnieifer H, Wolf PG. 2006. A classification of extant ferns. Taxon 55: 705–731. [CrossRef] [Google Scholar]
  • Steart DC, Strullu-Derrien C, Philippe M, Krieger J, Stevens L, Spencer ART, et al. 2020 (submitted). New evidence of the architecture and affinity of fossil trees from the Jurassic Period Purbeck Forests of southern England. [Google Scholar]
  • Thévenard F, Gomez B, Daviero-Gomez V. 2005. Xeromorphic adaptations of some Mesozoic gymnosperms. A review with paleoclimatological implications. Comptes Rendus Palevol 4: 67–77. [CrossRef] [Google Scholar]
  • Vakhrameev VA, Doludenko MP. 1977. The Middle–Late Jurassic boundary, an important threshold in the development of climate and vegetation of the Northern Hemisphere. International Geology Review 19: 621–632. [CrossRef] [Google Scholar]
  • Van Konijnenburg-Van Cittert JHA. 1971. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Botanica Neerlandica 20: 1–97. [CrossRef] [Google Scholar]
  • Van Konijnenburg-Van Cittert JHA. 2002. Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia. Review of Palaeobotany and Palynology 119: 113–124. [CrossRef] [Google Scholar]
  • Waksmundzka M. 1981. Palynological analysis of Lower Cretaceous sediments from Kujawy (Poland). Acta Paleontologica Polonica 26: 257–280. [Google Scholar]
  • Walker JW, Walker A. 1984. Ultrastructure of Lower Cretaceous angiopserm pollen and the origin and early evolution of flowering plants. Annals of the Missouri Botanical Garden 71: 464–521. [CrossRef] [Google Scholar]
  • Wetzel W. 1953. Mikropaläontologische Untersuchung des schleswigholsteinischen Bernsteins. Neues Jahrbuch für Geologie und Paläontologie H7: 11–321. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.